Tailoring mechanical, microstructural and toughening characteristics of plasma-sprayed graphene-reinforced samarium niobate coatings for extreme environments
{"title":"Tailoring mechanical, microstructural and toughening characteristics of plasma-sprayed graphene-reinforced samarium niobate coatings for extreme environments","authors":"Satyajeet Kumar, Shailesh Mani Pandey","doi":"10.1177/09544089241279724","DOIUrl":null,"url":null,"abstract":"Thermal barrier coatings (TBCs) are advanced ceramic layers applied to metal components to provide insulation and protection against high temperatures in extreme operating environments. This study investigated the effects of graphene nanoplatelet (GNP) reinforcement on samarium niobate (SN: SmNbO<jats:sub>4</jats:sub>) TBCs for extreme environments. Four ceramic top coat compositions were plasma-sprayed onto Inconel 718 substrates: Yttria-stabilized zirconia (YSZ), SmNbO<jats:sub>4</jats:sub> (SN), and SN reinforced with 1 and 1.5 wt% GNPs (SN-1GNP, SN-1.5GNP). The research examined microstructural characteristics, phase evolution, mechanical properties and toughening mechanisms. GNP reinforcement significantly improved coating density, with SN-1.5GNP reaching 97.4 ± 1.64% compared to 91.3 ± 1.69% for SN and 86.6 ± 1.47% for YSZ. Hardness and elastic modulus were enhanced by 86.38% and 57.91% for SN-1GNP, and 101.09% and 65.23% for SN-1.5GNP respectively. Moreover, fracture toughness experienced a significant increase from 1.86 ± 0.4 to 5.48 ± 0.7 MPa·m<jats:sup>1/2</jats:sup>, facilitated by toughening mechanisms, like splat bridging, GNP pull-out, crack arrest and ferroelastic domain switching. Additionally, the SN-1.5GNP coating exhibited a higher adhesion strength of 36.84 MPa, thereby leading to improved layer distribution and lesser chance of delamination. Compared to YSZ, these findings suggest that GNP-reinforced SN coatings offer enhanced performance for extreme environment applications.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544089241279724","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal barrier coatings (TBCs) are advanced ceramic layers applied to metal components to provide insulation and protection against high temperatures in extreme operating environments. This study investigated the effects of graphene nanoplatelet (GNP) reinforcement on samarium niobate (SN: SmNbO4) TBCs for extreme environments. Four ceramic top coat compositions were plasma-sprayed onto Inconel 718 substrates: Yttria-stabilized zirconia (YSZ), SmNbO4 (SN), and SN reinforced with 1 and 1.5 wt% GNPs (SN-1GNP, SN-1.5GNP). The research examined microstructural characteristics, phase evolution, mechanical properties and toughening mechanisms. GNP reinforcement significantly improved coating density, with SN-1.5GNP reaching 97.4 ± 1.64% compared to 91.3 ± 1.69% for SN and 86.6 ± 1.47% for YSZ. Hardness and elastic modulus were enhanced by 86.38% and 57.91% for SN-1GNP, and 101.09% and 65.23% for SN-1.5GNP respectively. Moreover, fracture toughness experienced a significant increase from 1.86 ± 0.4 to 5.48 ± 0.7 MPa·m1/2, facilitated by toughening mechanisms, like splat bridging, GNP pull-out, crack arrest and ferroelastic domain switching. Additionally, the SN-1.5GNP coating exhibited a higher adhesion strength of 36.84 MPa, thereby leading to improved layer distribution and lesser chance of delamination. Compared to YSZ, these findings suggest that GNP-reinforced SN coatings offer enhanced performance for extreme environment applications.
期刊介绍:
The Journal of Process Mechanical Engineering publishes high-quality, peer-reviewed papers covering a broad area of mechanical engineering activities associated with the design and operation of process equipment.