Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry

Lauren M. Zuromski, Jacob Durtschi, Aimal Aziz, Jeffrey Chumley, Mark Dewey, Paul English, Muir Morrison, Keith Simmon, Blaine Whipple, Brendan O'Fallon, David P. Ng
{"title":"Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry","authors":"Lauren M. Zuromski, Jacob Durtschi, Aimal Aziz, Jeffrey Chumley, Mark Dewey, Paul English, Muir Morrison, Keith Simmon, Blaine Whipple, Brendan O'Fallon, David P. Ng","doi":"arxiv-2409.11350","DOIUrl":null,"url":null,"abstract":"Machine-learning (ML) models in flow cytometry have the potential to reduce\nerror rates, increase reproducibility, and boost the efficiency of clinical\nlabs. While numerous ML models for flow cytometry data have been proposed, few\nstudies have described the clinical deployment of such models. Realizing the\npotential gains of ML models in clinical labs requires not only an accurate\nmodel, but infrastructure for automated inference, error detection, analytics\nand monitoring, and structured data extraction. Here, we describe an ML model\nfor detection of Acute Myeloid Leukemia (AML), along with the infrastructure\nsupporting clinical implementation. Our infrastructure leverages the resilience\nand scalability of the cloud for model inference, a Kubernetes-based workflow\nsystem that provides model reproducibility and resource management, and a\nsystem for extracting structured diagnoses from full-text reports. We also\ndescribe our model monitoring and visualization platform, an essential element\nfor ensuring continued model accuracy. Finally, we present a post-deployment\nanalysis of impacts on turn-around time and compare production accuracy to the\noriginal validation statistics.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine-learning (ML) models in flow cytometry have the potential to reduce error rates, increase reproducibility, and boost the efficiency of clinical labs. While numerous ML models for flow cytometry data have been proposed, few studies have described the clinical deployment of such models. Realizing the potential gains of ML models in clinical labs requires not only an accurate model, but infrastructure for automated inference, error detection, analytics and monitoring, and structured data extraction. Here, we describe an ML model for detection of Acute Myeloid Leukemia (AML), along with the infrastructure supporting clinical implementation. Our infrastructure leverages the resilience and scalability of the cloud for model inference, a Kubernetes-based workflow system that provides model reproducibility and resource management, and a system for extracting structured diagnoses from full-text reports. We also describe our model monitoring and visualization platform, an essential element for ensuring continued model accuracy. Finally, we present a post-deployment analysis of impacts on turn-around time and compare production accuracy to the original validation statistics.
基于实时机器学习的流式细胞术检测急性髓性白血病系统的临床验证
流式细胞仪中的机器学习(ML)模型具有降低错误率、提高可重复性和提高临床实验室效率的潜力。虽然针对流式细胞仪数据提出了许多 ML 模型,但很少有研究描述了此类模型的临床应用。要在临床实验室中实现 ML 模型的潜在收益,不仅需要准确的模型,还需要用于自动推理、错误检测、分析和监控以及结构化数据提取的基础设施。在此,我们介绍了一种用于检测急性髓性白血病(AML)的 ML 模型,以及支持临床实施的基础设施。我们的基础设施利用云的弹性和可扩展性进行模型推理,利用基于 Kubernetes 的工作流系统提供模型的可重复性和资源管理,并利用系统从全文报告中提取结构化诊断结果。我们还介绍了我们的模型监控和可视化平台,这是确保模型持续准确性的重要因素。最后,我们介绍了部署后对周转时间影响的分析,并将生产准确性与最初的验证统计数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信