A minimax theorem for locally Lipschitz functionals and applications

Marcelo F. Furtado, João Pablo P. Da Silva
{"title":"A minimax theorem for locally Lipschitz functionals and applications","authors":"Marcelo F. Furtado, João Pablo P. Da Silva","doi":"10.1007/s11854-024-0346-z","DOIUrl":null,"url":null,"abstract":"<p>We prove an abstract theorem which provides multiple critical points for locally Lipschtiz functionals under the presence of symmetry. The abstract result is applied to find multiple solutions in <i>H</i><span>\n<sup>1</sup><sub>0</sub>\n</span> (Ω) for the critical semi-linear elliptic equation − Δ<i>u</i> = <i>f</i>(<i>x, u</i>) + ∣<i>u</i>∣<sup>4/(<i>N</i>−2)</sup><i>u</i>, where <i>f</i> is a discontinuous perturbation and Ω ⊂ ℝ<sup><i>N</i></sup> is a bounded smooth domain.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-024-0346-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove an abstract theorem which provides multiple critical points for locally Lipschtiz functionals under the presence of symmetry. The abstract result is applied to find multiple solutions in H 10 (Ω) for the critical semi-linear elliptic equation − Δu = f(x, u) + ∣u4/(N−2)u, where f is a discontinuous perturbation and Ω ⊂ ℝN is a bounded smooth domain.

局部 Lipschitz 函数的最小定理及其应用
我们证明了一个抽象定理,它为存在对称性的局部李普希兹函数提供了多个临界点。我们将这一抽象结果应用于为临界半线性椭圆方程 - Δu = f(x, u) + ∣u∣4/(N-2)u 找出 H10 (Ω) 中的多个解,其中 f 是不连续的扰动,Ω ⊂ ℝN 是有界光滑域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信