Arc-smooth functions and cuspidality of sets

Armin Rainer
{"title":"Arc-smooth functions and cuspidality of sets","authors":"Armin Rainer","doi":"10.1007/s11854-024-0337-0","DOIUrl":null,"url":null,"abstract":"<p>A function <i>f</i> is arc-smooth if the composite <i>f</i> ◦ <i>c</i> with every smooth curve <i>c</i> in its domain of definition is smooth. On open sets in smooth manifolds the arc-smooth functions are precisely the smooth functions by a classical theorem of Boman. Recently, we extended this result to certain tame closed sets (namely, Hölder sets and simple fat subanalytic sets). In this paper we link, in a precise way, the cuspidality of the (boundary of the) set to the loss of regularity, i.e., how many derivatives of <i>f</i> ◦ <i>c</i> are needed in order to determine the derivatives of <i>f</i>. We also discuss how flatness of <i>f</i> ◦ <i>c</i> affects flatness of <i>f</i>. Besides Hölder sets and subanalytic sets we treat sets that are definable in certain polynomially bounded o-minimal expansions of the real field.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-024-0337-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A function f is arc-smooth if the composite fc with every smooth curve c in its domain of definition is smooth. On open sets in smooth manifolds the arc-smooth functions are precisely the smooth functions by a classical theorem of Boman. Recently, we extended this result to certain tame closed sets (namely, Hölder sets and simple fat subanalytic sets). In this paper we link, in a precise way, the cuspidality of the (boundary of the) set to the loss of regularity, i.e., how many derivatives of fc are needed in order to determine the derivatives of f. We also discuss how flatness of fc affects flatness of f. Besides Hölder sets and subanalytic sets we treat sets that are definable in certain polynomially bounded o-minimal expansions of the real field.

弧光函数和集合的脆性
如果函数 f ◦ c 与其定义域中的每条光滑曲线 c 的合成函数都是光滑的,则该函数 f 是弧光函数。根据波曼的经典定理,在光滑流形的开集上,弧光函数正是光滑函数。最近,我们将这一结果扩展到了某些驯服的闭集(即荷尔德集和简单胖次解析集)。在本文中,我们以精确的方式将集合(边界)的脆性与正则性损失联系起来,即需要多少 f o c 的导数才能确定 f 的导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信