{"title":"Arc-smooth functions and cuspidality of sets","authors":"Armin Rainer","doi":"10.1007/s11854-024-0337-0","DOIUrl":null,"url":null,"abstract":"<p>A function <i>f</i> is arc-smooth if the composite <i>f</i> ◦ <i>c</i> with every smooth curve <i>c</i> in its domain of definition is smooth. On open sets in smooth manifolds the arc-smooth functions are precisely the smooth functions by a classical theorem of Boman. Recently, we extended this result to certain tame closed sets (namely, Hölder sets and simple fat subanalytic sets). In this paper we link, in a precise way, the cuspidality of the (boundary of the) set to the loss of regularity, i.e., how many derivatives of <i>f</i> ◦ <i>c</i> are needed in order to determine the derivatives of <i>f</i>. We also discuss how flatness of <i>f</i> ◦ <i>c</i> affects flatness of <i>f</i>. Besides Hölder sets and subanalytic sets we treat sets that are definable in certain polynomially bounded o-minimal expansions of the real field.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-024-0337-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A function f is arc-smooth if the composite f ◦ c with every smooth curve c in its domain of definition is smooth. On open sets in smooth manifolds the arc-smooth functions are precisely the smooth functions by a classical theorem of Boman. Recently, we extended this result to certain tame closed sets (namely, Hölder sets and simple fat subanalytic sets). In this paper we link, in a precise way, the cuspidality of the (boundary of the) set to the loss of regularity, i.e., how many derivatives of f ◦ c are needed in order to determine the derivatives of f. We also discuss how flatness of f ◦ c affects flatness of f. Besides Hölder sets and subanalytic sets we treat sets that are definable in certain polynomially bounded o-minimal expansions of the real field.
如果函数 f ◦ c 与其定义域中的每条光滑曲线 c 的合成函数都是光滑的,则该函数 f 是弧光函数。根据波曼的经典定理,在光滑流形的开集上,弧光函数正是光滑函数。最近,我们将这一结果扩展到了某些驯服的闭集(即荷尔德集和简单胖次解析集)。在本文中,我们以精确的方式将集合(边界)的脆性与正则性损失联系起来,即需要多少 f o c 的导数才能确定 f 的导数。