On the injectivity of the shifted Funk–Radon transform and related harmonic analysis

Boris Rubin
{"title":"On the injectivity of the shifted Funk–Radon transform and related harmonic analysis","authors":"Boris Rubin","doi":"10.1007/s11854-024-0348-x","DOIUrl":null,"url":null,"abstract":"<p>Necessary and sufficient conditions are obtained for injectivity of the shifted Funk–Radon transform associated with <i>k</i>-dimensional totally geodesic submanifolds of the unit sphere <i>S</i><sup><i>n</i></sup> in ℝ<sup><i>n</i>+1</sup>. This result generalizes the well known statement for the spherical means on <i>S</i><sup><i>n</i></sup> and is formulated in terms of zeros of Jacobi polynomials. The relevant harmonic analysis is developed, including a new concept of induced Stiefel (or Grassmannian) harmonics, the Funk–Hecke type theorems, addition formula, and multipliers. Some perspectives and conjectures are discussed.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-024-0348-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Necessary and sufficient conditions are obtained for injectivity of the shifted Funk–Radon transform associated with k-dimensional totally geodesic submanifolds of the unit sphere Sn in ℝn+1. This result generalizes the well known statement for the spherical means on Sn and is formulated in terms of zeros of Jacobi polynomials. The relevant harmonic analysis is developed, including a new concept of induced Stiefel (or Grassmannian) harmonics, the Funk–Hecke type theorems, addition formula, and multipliers. Some perspectives and conjectures are discussed.

论移位 Funk-Radon 变换的注入性及相关谐波分析
我们得到了与ℝn+1 中单位球 Sn 的 k 维完全大地子球面相关的移位 Funk-Radon 变换的注入性的必要条件和充分条件。这一结果概括了关于 Sn 上球面手段的众所周知的陈述,并用雅可比多项式的零点来表述。相关的谐波分析得到了发展,包括诱导 Stiefel(或格拉斯曼)谐波的新概念、Funk-Hecke 型定理、加法公式和乘数。还讨论了一些观点和猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信