Construction of Nano ZnV2O4/N-Doped Porous Carbon Composites with Optimized Ionic and Electronic Conductivities as Competitive Cathodes toward Zinc-Ion Capacitors
{"title":"Construction of Nano ZnV2O4/N-Doped Porous Carbon Composites with Optimized Ionic and Electronic Conductivities as Competitive Cathodes toward Zinc-Ion Capacitors","authors":"Hao Jiang, Peng Yue, Qinchao Gao, Shujia Zhang, Musen Gao, Jinlong Wang, Yang Liu, Linrui Hou, Meng Chen, Changzhou Yuan","doi":"10.1002/cnma.202400445","DOIUrl":null,"url":null,"abstract":"<p>Zinc-ion capacitors (ZICs) have great potential for energy storage applications due to high safety, environmental friendliness, low cost, and high energy density. However, challenges such as poor ion diffusion kinetics and the low conductivity of cathode materials still need to be addressed. Nano ZnV<sub>2</sub>O<sub>4</sub>/nitrogen-doped porous carbon (ZVO/N-PC) composites are efficiently synthesized <i>via</i> a simple annealing process. Highly crystalline ZVO nanoparticles are <i>in-situ</i> grown on the three-dimensional N-PC surface by precisely tuning the ratio of the vanadium source, achieving a dual enhancement in electronic and ionic conductivities. Benefiting from the nanoengineering build-up, the optimized ZVO-0.6/N-PC anode exhibits impressive rate performance (405.9/308.8 mAh g<sup>−1</sup> at 0.2/5.0 A g<sup>−1</sup>) and cycling capability (0.0029 % capacity drop per cycle at 5.0 A g<sup>−1</sup> after 5,800 cycles). Using nitrogen-doped porous activated carbon (N-PAC) as the anode and ZVO-0.6/N-PC as the cathode, the assembled ZICs deliver a high energy density of 27.5 Wh kg<sup>−1</sup> at a power density of 450.0 W kg<sup>−1</sup>. After 10,000 cycles at 1.0 A g<sup>−1</sup>, the capacity retention rate remains as 72.8 %, demonstrating excellent cycling stability. This highlights the promising application of nano ZVO/N-PC composites towards ZICs as competitive cathodes.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400445","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc-ion capacitors (ZICs) have great potential for energy storage applications due to high safety, environmental friendliness, low cost, and high energy density. However, challenges such as poor ion diffusion kinetics and the low conductivity of cathode materials still need to be addressed. Nano ZnV2O4/nitrogen-doped porous carbon (ZVO/N-PC) composites are efficiently synthesized via a simple annealing process. Highly crystalline ZVO nanoparticles are in-situ grown on the three-dimensional N-PC surface by precisely tuning the ratio of the vanadium source, achieving a dual enhancement in electronic and ionic conductivities. Benefiting from the nanoengineering build-up, the optimized ZVO-0.6/N-PC anode exhibits impressive rate performance (405.9/308.8 mAh g−1 at 0.2/5.0 A g−1) and cycling capability (0.0029 % capacity drop per cycle at 5.0 A g−1 after 5,800 cycles). Using nitrogen-doped porous activated carbon (N-PAC) as the anode and ZVO-0.6/N-PC as the cathode, the assembled ZICs deliver a high energy density of 27.5 Wh kg−1 at a power density of 450.0 W kg−1. After 10,000 cycles at 1.0 A g−1, the capacity retention rate remains as 72.8 %, demonstrating excellent cycling stability. This highlights the promising application of nano ZVO/N-PC composites towards ZICs as competitive cathodes.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.