CLK3 promotes tumor proliferation by activating MYC signaling

IF 2.8 4区 生物学 Q3 CELL BIOLOGY
Jing Shen, Yu Zhao, Yang Man, Xuling Sun
{"title":"CLK3 promotes tumor proliferation by activating MYC signaling","authors":"Jing Shen, Yu Zhao, Yang Man, Xuling Sun","doi":"10.1186/s13008-024-00132-y","DOIUrl":null,"url":null,"abstract":"Colorectal cancer (CRC) ranks among the leading causes of cancer-related mortality worldwide, posing a significant public health challenge. Despite advancements in treatment strategies, prognosis for advanced CRC remains poor. Here, we investigate the role of CLK3 and its interaction with the c-Myc signaling pathway in CRC progression. Our study reveals significant overexpression of CLK3 in CRC tumor tissues, correlating with disease advancement, and demonstrates that CLK3 promotes CRC cell proliferation, mediated by its activation of MYC signaling through upregulation of c-MYC expression. In vivo experiments confirm the oncogenic role of CLK3, with its loss resulting in decreased tumor growth and c-MYC expression. These findings highlight CLK3 as a potential therapeutic target in CRC, offering insights into novel treatment strategies.","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"19 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Division","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13008-024-00132-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) ranks among the leading causes of cancer-related mortality worldwide, posing a significant public health challenge. Despite advancements in treatment strategies, prognosis for advanced CRC remains poor. Here, we investigate the role of CLK3 and its interaction with the c-Myc signaling pathway in CRC progression. Our study reveals significant overexpression of CLK3 in CRC tumor tissues, correlating with disease advancement, and demonstrates that CLK3 promotes CRC cell proliferation, mediated by its activation of MYC signaling through upregulation of c-MYC expression. In vivo experiments confirm the oncogenic role of CLK3, with its loss resulting in decreased tumor growth and c-MYC expression. These findings highlight CLK3 as a potential therapeutic target in CRC, offering insights into novel treatment strategies.
CLK3 通过激活 MYC 信号促进肿瘤增殖
结直肠癌(CRC)是全球癌症相关死亡的主要原因之一,对公共卫生构成了重大挑战。尽管治疗策略取得了进展,但晚期 CRC 的预后仍然很差。在此,我们研究了 CLK3 及其与 c-Myc 信号通路的相互作用在 CRC 进展中的作用。我们的研究揭示了CLK3在CRC肿瘤组织中的显著过表达,这与疾病进展相关,并证明CLK3通过上调c-MYC的表达激活MYC信号传导,从而促进CRC细胞增殖。体内实验证实了 CLK3 的致癌作用,其缺失会导致肿瘤生长和 c-MYC 表达的减少。这些发现凸显了 CLK3 作为 CRC 潜在治疗靶点的作用,为新型治疗策略提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Division
Cell Division CELL BIOLOGY-
CiteScore
3.70
自引率
0.00%
发文量
5
审稿时长
>12 weeks
期刊介绍: Cell Division is an open access, peer-reviewed journal that encompasses all the molecular aspects of cell cycle control and cancer, cell growth, proliferation, survival, differentiation, signalling, gene transcription, protein synthesis, genome integrity, chromosome stability, centrosome duplication, DNA damage and DNA repair. Cell Division provides an online forum for the cell-cycle community that aims to publish articles on all exciting aspects of cell-cycle research and to bridge the gap between models of cell cycle regulation, development, and cancer biology. This forum is driven by specialized and timely research articles, reviews and commentaries focused on this fast moving field, providing an invaluable tool for cell-cycle biologists. Cell Division publishes articles in areas which includes, but not limited to: DNA replication, cell fate decisions, cell cycle & development Cell proliferation, mitosis, spindle assembly checkpoint, ubiquitin mediated degradation DNA damage & repair Apoptosis & cell death
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信