Audio-text Retrieval with Transformer-based Hierarchical Alignment and Disentangled Cross-modal Representation

Yifei Xin, Zhihong Zhu, Xuxin Cheng, Xusheng Yang, Yuexian Zou
{"title":"Audio-text Retrieval with Transformer-based Hierarchical Alignment and Disentangled Cross-modal Representation","authors":"Yifei Xin, Zhihong Zhu, Xuxin Cheng, Xusheng Yang, Yuexian Zou","doi":"arxiv-2409.09256","DOIUrl":null,"url":null,"abstract":"Most existing audio-text retrieval (ATR) approaches typically rely on a\nsingle-level interaction to associate audio and text, limiting their ability to\nalign different modalities and leading to suboptimal matches. In this work, we\npresent a novel ATR framework that leverages two-stream Transformers in\nconjunction with a Hierarchical Alignment (THA) module to identify multi-level\ncorrespondences of different Transformer blocks between audio and text.\nMoreover, current ATR methods mainly focus on learning a global-level\nrepresentation, missing out on intricate details to capture audio occurrences\nthat correspond to textual semantics. To bridge this gap, we introduce a\nDisentangled Cross-modal Representation (DCR) approach that disentangles\nhigh-dimensional features into compact latent factors to grasp fine-grained\naudio-text semantic correlations. Additionally, we develop a confidence-aware\n(CA) module to estimate the confidence of each latent factor pair and\nadaptively aggregate cross-modal latent factors to achieve local semantic\nalignment. Experiments show that our THA effectively boosts ATR performance,\nwith the DCR approach further contributing to consistent performance gains.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most existing audio-text retrieval (ATR) approaches typically rely on a single-level interaction to associate audio and text, limiting their ability to align different modalities and leading to suboptimal matches. In this work, we present a novel ATR framework that leverages two-stream Transformers in conjunction with a Hierarchical Alignment (THA) module to identify multi-level correspondences of different Transformer blocks between audio and text. Moreover, current ATR methods mainly focus on learning a global-level representation, missing out on intricate details to capture audio occurrences that correspond to textual semantics. To bridge this gap, we introduce a Disentangled Cross-modal Representation (DCR) approach that disentangles high-dimensional features into compact latent factors to grasp fine-grained audio-text semantic correlations. Additionally, we develop a confidence-aware (CA) module to estimate the confidence of each latent factor pair and adaptively aggregate cross-modal latent factors to achieve local semantic alignment. Experiments show that our THA effectively boosts ATR performance, with the DCR approach further contributing to consistent performance gains.
利用基于变换器的分层对齐和分离式跨模态表示进行音频文本检索
大多数现有的音频-文本检索(ATR)方法通常依赖于单级交互来关联音频和文本,这限制了它们对齐不同模态的能力,并导致次优匹配。在这项工作中,我们提出了一种新颖的 ATR 框架,该框架利用双流变换器与分层对齐(THA)模块相结合,来识别音频和文本之间不同变换器块的多层次对应关系。此外,当前的 ATR 方法主要侧重于学习全局级别的表述,而忽略了捕捉音频出现与文本语义对应的复杂细节。为了弥补这一缺陷,我们引入了一种将高维特征分解为紧凑潜在因子的 "分解跨模态表示"(Disentangled Cross-modal Representation,DCR)方法,以把握细粒度的音频-文本语义关联。此外,我们还开发了一个置信度感知(CA)模块,用于估计每个潜在因子对的置信度,并自适应地聚合跨模态潜在因子,以实现局部语义对齐。实验表明,我们的 THA 有效地提高了 ATR 性能,而 DCR 方法则进一步促进了性能的持续提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信