Noor Ul Ain Tahir, Zuping Zhang, Muhammad Asim, Sundas Iftikhar, Ahmed A. Abd El-Latif
{"title":"PVDM-YOLOv8l: a solution for reliable pedestrian and vehicle detection in autonomous vehicles under adverse weather conditions","authors":"Noor Ul Ain Tahir, Zuping Zhang, Muhammad Asim, Sundas Iftikhar, Ahmed A. Abd El-Latif","doi":"10.1007/s11042-024-20219-6","DOIUrl":null,"url":null,"abstract":"<p>Ensuring the safe navigation of autonomous vehicles in intelligent transportation system depends on their ability to detect pedestrians and vehicles. While transformer-based models for object detection have shown remarkable advancements, accurately identifying pedestrians and vehicles in adverse weather conditions remains a challenging task. Adverse weather introduces image quality degradation, leading to issues such as low contrast, reduced visibility, blurred edges, false detection, misdetection of tiny objects, and other impediments that further complicate the accuracy of detection. This paper introduces a novel Pedestrian and Vehicle Detection Model under adverse weather conditions, denoted as PVDM-YOLOv8l. In our proposed model, we first incorporate the Swin-Transformer method, which is designed for global extraction of feature of small objects to identify in poor visibility, into the YOLOv8l backbone structure. To enhance detection accuracy and address the impact of inaccurate features on recognition performance, CBAM is integrated between the neck and head networks of YOLOv8l, aiming to gather crucial information and obtain essential data. Finally, we adopted the loss function Wise-IOU v3. This function was implemented to mitigate the adverse effects of low-quality instances by minimizing negative gradients. Additionally, we enhanced and augmented the DAWN dataset and created a custom dataset, named DAWN2024, to cater to the specific requirements of our study. To verify the superiority of PVDM-YOLOV8l, its performance was compared against several commonly used object detectors, including YOLOv3, YOLOv3-tiny, YOLOv3-spp, YOLOv5, YOLOv6, and all the versions of YOLOv8 (n, m, s, l, and x) and some traditional models. The experimental results demonstrate that our proposed model achieved a 6.6%, 5.4%, 6%, and 5.1% improvement in precision, recall, F1-score and mean Average Precision (mAP) on the custom DAWN2024 dataset. This substantial improvement in accuracy indicates a significant leap in the capability of our model to detect pedestrians and vehicles under adverse weather conditions, which is crucial for the safe navigation of autonomous vehicles.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20219-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring the safe navigation of autonomous vehicles in intelligent transportation system depends on their ability to detect pedestrians and vehicles. While transformer-based models for object detection have shown remarkable advancements, accurately identifying pedestrians and vehicles in adverse weather conditions remains a challenging task. Adverse weather introduces image quality degradation, leading to issues such as low contrast, reduced visibility, blurred edges, false detection, misdetection of tiny objects, and other impediments that further complicate the accuracy of detection. This paper introduces a novel Pedestrian and Vehicle Detection Model under adverse weather conditions, denoted as PVDM-YOLOv8l. In our proposed model, we first incorporate the Swin-Transformer method, which is designed for global extraction of feature of small objects to identify in poor visibility, into the YOLOv8l backbone structure. To enhance detection accuracy and address the impact of inaccurate features on recognition performance, CBAM is integrated between the neck and head networks of YOLOv8l, aiming to gather crucial information and obtain essential data. Finally, we adopted the loss function Wise-IOU v3. This function was implemented to mitigate the adverse effects of low-quality instances by minimizing negative gradients. Additionally, we enhanced and augmented the DAWN dataset and created a custom dataset, named DAWN2024, to cater to the specific requirements of our study. To verify the superiority of PVDM-YOLOV8l, its performance was compared against several commonly used object detectors, including YOLOv3, YOLOv3-tiny, YOLOv3-spp, YOLOv5, YOLOv6, and all the versions of YOLOv8 (n, m, s, l, and x) and some traditional models. The experimental results demonstrate that our proposed model achieved a 6.6%, 5.4%, 6%, and 5.1% improvement in precision, recall, F1-score and mean Average Precision (mAP) on the custom DAWN2024 dataset. This substantial improvement in accuracy indicates a significant leap in the capability of our model to detect pedestrians and vehicles under adverse weather conditions, which is crucial for the safe navigation of autonomous vehicles.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms