Fed‐batch strategies for intensified rVSV vector production in high cell density cultures of suspension HEK293 cells

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cristina A. T. Silva, Amine A. Kamen, Olivier Henry
{"title":"Fed‐batch strategies for intensified rVSV vector production in high cell density cultures of suspension HEK293 cells","authors":"Cristina A. T. Silva, Amine A. Kamen, Olivier Henry","doi":"10.1002/btpr.3506","DOIUrl":null,"url":null,"abstract":"Vesicular stomatitis virus (VSV) has been increasingly demonstrated as a promising viral vector platform. As the interest over this modality for vaccine and gene therapy applications increases, the need for intensified processes to produce these vectors emerge. In this study, we develop fed‐batch‐based operations to intensify the production of a recombinant VSV‐based vaccine candidate (rVSV‐SARS‐CoV‐2) in suspension cultures of HEK293 cells. A feeding strategy, in which a commercial concentrated medium was added to cultures based on cell growth through a fixed cell specific feeding rate (CSFR), was applied for the development of two different processes using Ambr250 modular bioreactors. Cultures operated in hybrid fed‐batch/perfusion (FB/P) or fed‐batch (FB) were able to sustain infections performed at 8.0 × 10<jats:sup>6</jats:sup> cells/mL, respectively resulting in 3.9 and 5.0‐fold increase in total yield (<jats:italic>Y</jats:italic><jats:sub>T</jats:sub>) and 1.7 and 5.6‐fold increase in volumetric productivity (VP) when compared with a batch reference. A maximum viral titer of 4.5 × 10<jats:sup>10</jats:sup> TCID<jats:sub>50</jats:sub>/mL was reached, which is comparable or higher than other processes for VSV production in different cell lines. Overall, our study reports efficient fed‐batch options to intensify the production of a rVSV‐based vaccine candidate in suspension HEK293 cells.","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":"4 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3506","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vesicular stomatitis virus (VSV) has been increasingly demonstrated as a promising viral vector platform. As the interest over this modality for vaccine and gene therapy applications increases, the need for intensified processes to produce these vectors emerge. In this study, we develop fed‐batch‐based operations to intensify the production of a recombinant VSV‐based vaccine candidate (rVSV‐SARS‐CoV‐2) in suspension cultures of HEK293 cells. A feeding strategy, in which a commercial concentrated medium was added to cultures based on cell growth through a fixed cell specific feeding rate (CSFR), was applied for the development of two different processes using Ambr250 modular bioreactors. Cultures operated in hybrid fed‐batch/perfusion (FB/P) or fed‐batch (FB) were able to sustain infections performed at 8.0 × 106 cells/mL, respectively resulting in 3.9 and 5.0‐fold increase in total yield (YT) and 1.7 and 5.6‐fold increase in volumetric productivity (VP) when compared with a batch reference. A maximum viral titer of 4.5 × 1010 TCID50/mL was reached, which is comparable or higher than other processes for VSV production in different cell lines. Overall, our study reports efficient fed‐batch options to intensify the production of a rVSV‐based vaccine candidate in suspension HEK293 cells.
在悬浮 HEK293 细胞的高细胞密度培养液中强化 rVSV 载体生产的联批策略
水泡性口炎病毒(VSV)已被证明是一种前景广阔的病毒载体平台。随着人们对这种用于疫苗和基因治疗的方式的兴趣与日俱增,生产这些载体的强化工艺的需求也随之出现。在本研究中,我们开发了基于喂料批处理的操作方法,以在 HEK293 细胞悬浮培养物中强化生产基于重组 VSV 的候选疫苗(rVSV-SARS-CoV-2)。在使用 Ambr250 模块化生物反应器开发两种不同工艺时,采用了一种喂料策略,即通过固定的细胞特定喂料速率(CSFR),根据细胞生长情况向培养物中添加商业浓缩培养基。与批次参考相比,以混合喂料批次/灌流(FB/P)或喂料批次(FB)方式运行的培养物能够维持 8.0 × 106 cells/mL 的感染,总产量(YT)分别提高了 3.9 倍和 5.0 倍,体积生产率(VP)分别提高了 1.7 倍和 5.6 倍。最大病毒滴度为 4.5 × 1010 TCID50/mL,与其他在不同细胞系中生产 VSV 的工艺相当或更高。总之,我们的研究报告了在悬浮 HEK293 细胞中强化生产基于 rVSV 的候选疫苗的高效喂料批次方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信