The fabrication of polyimide-based tunable ternary memristors doped with Ni-Co coated carbon composite nanofibers

IF 1.8 4区 化学 Q3 POLYMER SCIENCE
Yuanyuan Liu, He Zhao, Liyuan Liu, Jinghua Yin
{"title":"The fabrication of polyimide-based tunable ternary memristors doped with Ni-Co coated carbon composite nanofibers","authors":"Yuanyuan Liu, He Zhao, Liyuan Liu, Jinghua Yin","doi":"10.1177/09540083241283965","DOIUrl":null,"url":null,"abstract":"Polymer matrix composite memristors exhibit exceptional performances, including a straightforward structure, rapid operational speed, high density, good scalability, cost-effectiveness, and superior mechanical flexibility for wearable applications. This study utilizes sensitized chemical evaporation and spin coating carbonization techniques to fabricate composite nanofibers doped with Nickel-Cobalt coated multi-walled carbon nanotubes (SC-NCMTs). A novel polyimide matrix composite memory device was fabricated using in-situ polymerization technology. The transmission electron microscopy (TEM) and micro-Raman spectroscopy analyses validate the presence of dual interfaces structure locating between the Ni-Co-MWNTs, carbon nanofibers and PI matrix and a large number of defects in the SC-NCMTs/PI composite films, resulting in tunable ternary resistive switching behaviors of the composite memory device, exhibiting good ON/OFF current ratio of 10<jats:sup>4</jats:sup> and a retention time of 2500 s under operating voltages V<jats:sub>onset</jats:sub> ≤ 3 V. Based on the interface layer distribution and the defects in the composites, different physical models are comprised to investigate the charge transmission mechanism underlying the multilevel resistive switching behaviors. The studies on the impact of tunable multi-interfaces trap structures on multilevel resistive switching could enhance the data storage capabilities of polymer matrix memristors.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":"32 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083241283965","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer matrix composite memristors exhibit exceptional performances, including a straightforward structure, rapid operational speed, high density, good scalability, cost-effectiveness, and superior mechanical flexibility for wearable applications. This study utilizes sensitized chemical evaporation and spin coating carbonization techniques to fabricate composite nanofibers doped with Nickel-Cobalt coated multi-walled carbon nanotubes (SC-NCMTs). A novel polyimide matrix composite memory device was fabricated using in-situ polymerization technology. The transmission electron microscopy (TEM) and micro-Raman spectroscopy analyses validate the presence of dual interfaces structure locating between the Ni-Co-MWNTs, carbon nanofibers and PI matrix and a large number of defects in the SC-NCMTs/PI composite films, resulting in tunable ternary resistive switching behaviors of the composite memory device, exhibiting good ON/OFF current ratio of 104 and a retention time of 2500 s under operating voltages Vonset ≤ 3 V. Based on the interface layer distribution and the defects in the composites, different physical models are comprised to investigate the charge transmission mechanism underlying the multilevel resistive switching behaviors. The studies on the impact of tunable multi-interfaces trap structures on multilevel resistive switching could enhance the data storage capabilities of polymer matrix memristors.
掺杂镍钴涂层碳复合纳米纤维的聚酰亚胺基可调谐三元忆阻器的制备方法
聚合物基复合忆阻器表现出卓越的性能,包括结构简单、运行速度快、密度高、可扩展性好、成本效益高,以及在可穿戴应用中具有出色的机械灵活性。本研究利用敏化化学蒸发和旋涂碳化技术制造掺杂镍钴涂层多壁碳纳米管(SC-NCMTs)的复合纳米纤维。利用原位聚合技术制造了一种新型聚酰亚胺基复合存储器件。透射电子显微镜(TEM)和微拉曼光谱分析验证了位于镍-钴-多壁碳纳米管、碳纳米纤维和聚酰亚胺基体之间的双界面结构以及 SC-NCMTs/PI 复合薄膜中的大量缺陷的存在,从而实现了复合存储器件的可调三元电阻开关行为,在工作电压 Vonset ≤ 3 V 的条件下,显示出 104 的良好导通/关断电流比和 2500 s 的保持时间。根据复合材料中的界面层分布和缺陷,建立了不同的物理模型,以研究多级电阻开关行为背后的电荷传输机制。通过研究可调多界面陷阱结构对多级电阻开关的影响,可以提高聚合物矩阵忆阻器的数据存储能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Performance Polymers
High Performance Polymers 化学-高分子科学
CiteScore
4.20
自引率
14.30%
发文量
106
审稿时长
1.2 months
期刊介绍: Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信