Bingjie Zhu, Zhenhao Li, Zehua Jin, Yi Zhong, Tianhang Lv, Zhiwei Ge, Haoran Li, Tianhao Wang, Yugang Lin, Huihui Liu, Tianyi Ma, Shufang Wang, Jie Liao, Xiaohui Fan
{"title":"Knowledge-based in silico fragmentation and annotation of mass spectra for natural products with MassKG","authors":"Bingjie Zhu, Zhenhao Li, Zehua Jin, Yi Zhong, Tianhang Lv, Zhiwei Ge, Haoran Li, Tianhao Wang, Yugang Lin, Huihui Liu, Tianyi Ma, Shufang Wang, Jie Liao, Xiaohui Fan","doi":"10.1016/j.csbj.2024.09.001","DOIUrl":null,"url":null,"abstract":"Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is a potent analytical technique utilized for identifying natural products from complex sources. However, due to the structural diversity, annotating LC-MS/MS data of natural products efficiently remains challenging, hindering the discovery process of novel active structures. Here, we introduce MassKG, an algorithm that combines a knowledge-based fragmentation strategy and a deep learning-based molecule generation model to aid in rapid dereplication and the discovery of novel NP structures. Specifically, MassKG has compiled 407,720 known NP structures and, based on this, generated 266,353 new structures using chemical language models for the discovery of potential novel compounds. Furthermore, MassKG demonstrates exceptional performance in spectra annotation compared to state-of-the-art algorithms. To enhance usability, MassKG has been implemented as a web server for annotating tandem mass spectral data (MS/MS, MS2) with a user-friendly interface, automatic reporting, and fragment tree visualization. Lastly, the interpretive capability of MassKG is comprehensively validated through composition analysis and MS annotation of , , and . MassKG is now accessible at .","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2024.09.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is a potent analytical technique utilized for identifying natural products from complex sources. However, due to the structural diversity, annotating LC-MS/MS data of natural products efficiently remains challenging, hindering the discovery process of novel active structures. Here, we introduce MassKG, an algorithm that combines a knowledge-based fragmentation strategy and a deep learning-based molecule generation model to aid in rapid dereplication and the discovery of novel NP structures. Specifically, MassKG has compiled 407,720 known NP structures and, based on this, generated 266,353 new structures using chemical language models for the discovery of potential novel compounds. Furthermore, MassKG demonstrates exceptional performance in spectra annotation compared to state-of-the-art algorithms. To enhance usability, MassKG has been implemented as a web server for annotating tandem mass spectral data (MS/MS, MS2) with a user-friendly interface, automatic reporting, and fragment tree visualization. Lastly, the interpretive capability of MassKG is comprehensively validated through composition analysis and MS annotation of , , and . MassKG is now accessible at .
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology