Tao Jing, Hao Lv, Min Gan, Xiao-hui Fan, Jing Li, You-xun Dai, Zhuo-qi Liu, Shi-xian Li
{"title":"A new insight into iron ore oxidized pellets prepared by steel belt roasting process","authors":"Tao Jing, Hao Lv, Min Gan, Xiao-hui Fan, Jing Li, You-xun Dai, Zhuo-qi Liu, Shi-xian Li","doi":"10.1007/s42243-024-01336-w","DOIUrl":null,"url":null,"abstract":"<p>The steel belt roasting process has the advantages of low cost, small footprint, and high thermal efficiency, making it widely used in the smelting of ferroalloys such as ferrochrome, ferromanganese, and ferroniobium. However, its application in preparing iron ore oxidized pellets has not been sufficiently explored. The optimal thermal process conditions for magnesium-containing oxidized pellet preparation by steel belt roasting machine were investigated based on the roasting properties of high-magnesium iron concentrate and typical iron concentrate. The results indicate that, for the blending scheme of 70 wt.% high-magnesium iron concentrate and 30 wt.% typical iron concentrate, the appropriate preheating temperature for pellets is 950–975 °C and the suitable roasting temperature is 1250–1275 °C, during which the compressive strength of pellets can exceed 2500 N pellet<sup>−1</sup>. During the steel belt roasting process, SO<sub>2</sub> is primarily released in the preheating zone, and the maximum exhaust gas temperature in the roasting zone can reach 637 °C. High-temperature sulfur-containing exhaust gas causes oxidation corrosion, sulfide corrosion, and deformation of the steel belt. To enhance the steel belt longevity, it is recommended to appropriately reduce the wind velocity in the preheating zone and roasting zone, while also decreasing the ratio of pellet bed height to hearth layer height. By adopting the system of “low wind velocity, thin pellet bed, fast steel belt speed,” the exhaust gas temperature can be reduced to 463 °C. The prepared pellet maintains a compressive strength of 2607 N pellet<sup>−1</sup> and exhibits excellent metallurgical properties.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"45 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01336-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The steel belt roasting process has the advantages of low cost, small footprint, and high thermal efficiency, making it widely used in the smelting of ferroalloys such as ferrochrome, ferromanganese, and ferroniobium. However, its application in preparing iron ore oxidized pellets has not been sufficiently explored. The optimal thermal process conditions for magnesium-containing oxidized pellet preparation by steel belt roasting machine were investigated based on the roasting properties of high-magnesium iron concentrate and typical iron concentrate. The results indicate that, for the blending scheme of 70 wt.% high-magnesium iron concentrate and 30 wt.% typical iron concentrate, the appropriate preheating temperature for pellets is 950–975 °C and the suitable roasting temperature is 1250–1275 °C, during which the compressive strength of pellets can exceed 2500 N pellet−1. During the steel belt roasting process, SO2 is primarily released in the preheating zone, and the maximum exhaust gas temperature in the roasting zone can reach 637 °C. High-temperature sulfur-containing exhaust gas causes oxidation corrosion, sulfide corrosion, and deformation of the steel belt. To enhance the steel belt longevity, it is recommended to appropriately reduce the wind velocity in the preheating zone and roasting zone, while also decreasing the ratio of pellet bed height to hearth layer height. By adopting the system of “low wind velocity, thin pellet bed, fast steel belt speed,” the exhaust gas temperature can be reduced to 463 °C. The prepared pellet maintains a compressive strength of 2607 N pellet−1 and exhibits excellent metallurgical properties.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..