Uniqueness of irreducible desingularization of singularities associated to negative vector bundles

Fusheng Deng, Yinji Li, Qunhuan Liu, Xiangyu Zhou
{"title":"Uniqueness of irreducible desingularization of singularities associated to negative vector bundles","authors":"Fusheng Deng, Yinji Li, Qunhuan Liu, Xiangyu Zhou","doi":"arxiv-2409.09402","DOIUrl":null,"url":null,"abstract":"We prove that the irreducible desingularization of a singularity given by the\nGrauert blow down of a negative holomorphic vector bundle over a compact\ncomplex manifold is unique up to isomorphism, and as an application, we show\nthat two negative line bundles over compact complex manifolds are isomorphic if\nand only if their Grauert blow downs have isomorphic germs near the\nsingularities. We also show that there is a unique way to modify a submanifold\nof a complex manifold to a hypersurface, namely, the blow up of the ambient\nmanifold along the submanifold.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the irreducible desingularization of a singularity given by the Grauert blow down of a negative holomorphic vector bundle over a compact complex manifold is unique up to isomorphism, and as an application, we show that two negative line bundles over compact complex manifolds are isomorphic if and only if their Grauert blow downs have isomorphic germs near the singularities. We also show that there is a unique way to modify a submanifold of a complex manifold to a hypersurface, namely, the blow up of the ambient manifold along the submanifold.
负向量束相关奇点的不可还原去奇点化的唯一性
我们证明了紧凑复流形上负全形向量束的格劳厄特下吹给出的奇点的不可还原去奇点化是唯一的,直到同构;作为应用,我们证明了紧凑复流形上的两个负线束是同构的,当且仅当它们的格劳厄特下吹在奇点附近有同构的胚芽。我们还证明了将复流形的子流形修正为超曲面的唯一方法,即沿子流形吹胀环境流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信