$L^2$-vanishing theorem and a conjecture of Kollár

Ya Deng, Botong Wang
{"title":"$L^2$-vanishing theorem and a conjecture of Kollár","authors":"Ya Deng, Botong Wang","doi":"arxiv-2409.11399","DOIUrl":null,"url":null,"abstract":"In 1995, Koll\\'ar conjectured that a complex projective $n$-fold $X$ with\ngenerically large fundamental group has Euler characteristic $\\chi(X, K_X)\\geq\n0$. In this paper, we confirm the conjecture assuming $X$ has linear\nfundamental group, i.e., there exists an almost faithful representation\n$\\pi_1(X)\\to {\\rm GL}_N(\\mathbb{C})$. We deduce the conjecture by proving a\nstronger $L^2$ vanishing theorem: for the universal cover $\\widetilde{X}$ of\nsuch $X$, its $L^2$-Dolbeaut cohomology $H_{(2)}^{n,q}(\\widetilde{X})=0$ for\n$q\\neq 0$. The main ingredients of the proof are techniques from the linear\nShafarevich conjecture along with some analytic methods.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"197 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1995, Koll\'ar conjectured that a complex projective $n$-fold $X$ with generically large fundamental group has Euler characteristic $\chi(X, K_X)\geq 0$. In this paper, we confirm the conjecture assuming $X$ has linear fundamental group, i.e., there exists an almost faithful representation $\pi_1(X)\to {\rm GL}_N(\mathbb{C})$. We deduce the conjecture by proving a stronger $L^2$ vanishing theorem: for the universal cover $\widetilde{X}$ of such $X$, its $L^2$-Dolbeaut cohomology $H_{(2)}^{n,q}(\widetilde{X})=0$ for $q\neq 0$. The main ingredients of the proof are techniques from the linear Shafarevich conjecture along with some analytic methods.
L^2$ 消失定理和科拉尔猜想
1995 年,科尔(Koll\'ar )猜想具有一般大基群的复投影 $n$ 折叠 $X$ 具有欧拉特征 $\chi(X, K_X)\geq0$ 。在本文中,我们假设 $X$ 具有线性基群,即存在一个几乎忠实于 {\rm GL}_N(\mathbb{C})$ 的表示$/pi_1(X)/to {\rm GL}_N(\mathbb{C})$ 来证实这一猜想。我们通过证明更强的 $L^2$ 消失定理来推导出猜想:对于这样的 $X$ 的普遍盖 $\widetilde{X}$, 其 $L^2$-Dolbeaut 同调 $H_{(2)}^{n,q}(\widetilde{X})=0$ for$q\neq 0$。证明的主要内容是线性沙法雷维奇猜想的技术和一些分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信