A hybrid framework for heterogeneous object detection amidst diverse and adverse weather conditions employing Enhanced-DARTS

Anuj Kumar, Sarita Gautam
{"title":"A hybrid framework for heterogeneous object detection amidst diverse and adverse weather conditions employing Enhanced-DARTS","authors":"Anuj Kumar, Sarita Gautam","doi":"10.1007/s41870-024-02164-7","DOIUrl":null,"url":null,"abstract":"<p>Autonomous vehicles face significant challenges in accurately identifying vehicles, objects, and traffic signals under adverse weather conditions and poor lighting. To address these issues, we introduce a novel detection system utilizing automatic white balance techniques, specifically the Adaptive Retinex algorithm, to restore visibility and enhance color. This system is integrated with a Faster R-CNN framework enhanced by non-maximum suppression to improve the accuracy of object detection. Employing a combination of three datasets—Dawn, MCWRD, and Indian Roads Dataset (IRD)—our method includes over 6000 augmented images representing diverse environmental conditions. We also implement an optimized version of Differentiable ARchiTecture Search (DARTS) to dynamically fine-tune the architectural parameters of our detection model. This approach has successfully achieved a detection accuracy of 97.43% with a minimal loss rate, demonstrating significant potential for enhancing navigation safety in autonomous vehicles across various challenging environments.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02164-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous vehicles face significant challenges in accurately identifying vehicles, objects, and traffic signals under adverse weather conditions and poor lighting. To address these issues, we introduce a novel detection system utilizing automatic white balance techniques, specifically the Adaptive Retinex algorithm, to restore visibility and enhance color. This system is integrated with a Faster R-CNN framework enhanced by non-maximum suppression to improve the accuracy of object detection. Employing a combination of three datasets—Dawn, MCWRD, and Indian Roads Dataset (IRD)—our method includes over 6000 augmented images representing diverse environmental conditions. We also implement an optimized version of Differentiable ARchiTecture Search (DARTS) to dynamically fine-tune the architectural parameters of our detection model. This approach has successfully achieved a detection accuracy of 97.43% with a minimal loss rate, demonstrating significant potential for enhancing navigation safety in autonomous vehicles across various challenging environments.

Abstract Image

利用增强型 DARTS 在各种恶劣天气条件下进行异构物体检测的混合框架
自动驾驶汽车在恶劣天气条件和光线不足的情况下准确识别车辆、物体和交通信号面临着巨大挑战。为了解决这些问题,我们推出了一种新型检测系统,利用自动白平衡技术,特别是自适应 Retinex 算法,来恢复能见度和增强色彩。该系统与通过非最大抑制增强的快速 R-CNN 框架相结合,提高了物体检测的准确性。我们的方法结合使用了三个数据集--黎明、MCWRD 和印度道路数据集 (IRD),其中包括 6000 多张代表不同环境条件的增强图像。我们还采用了优化版可微分结构搜索(DARTS)来动态微调检测模型的结构参数。这种方法成功地实现了 97.43% 的检测准确率,且损失率极低,在提高自动驾驶汽车在各种挑战性环境中的导航安全性方面展现出巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信