Spontaneous Informal Speech Dataset for Punctuation Restoration

Xing Yi Liu, Homayoon Beigi
{"title":"Spontaneous Informal Speech Dataset for Punctuation Restoration","authors":"Xing Yi Liu, Homayoon Beigi","doi":"arxiv-2409.11241","DOIUrl":null,"url":null,"abstract":"Presently, punctuation restoration models are evaluated almost solely on\nwell-structured, scripted corpora. On the other hand, real-world ASR systems\nand post-processing pipelines typically apply towards spontaneous speech with\nsignificant irregularities, stutters, and deviations from perfect grammar. To\naddress this discrepancy, we introduce SponSpeech, a punctuation restoration\ndataset derived from informal speech sources, which includes punctuation and\ncasing information. In addition to publicly releasing the dataset, we\ncontribute a filtering pipeline that can be used to generate more data. Our\nfiltering pipeline examines the quality of both speech audio and transcription\ntext. We also carefully construct a ``challenging\" test set, aimed at\nevaluating models' ability to leverage audio information to predict otherwise\ngrammatically ambiguous punctuation. SponSpeech is available at\nhttps://github.com/GitHubAccountAnonymous/PR, along with all code for dataset\nbuilding and model runs.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Presently, punctuation restoration models are evaluated almost solely on well-structured, scripted corpora. On the other hand, real-world ASR systems and post-processing pipelines typically apply towards spontaneous speech with significant irregularities, stutters, and deviations from perfect grammar. To address this discrepancy, we introduce SponSpeech, a punctuation restoration dataset derived from informal speech sources, which includes punctuation and casing information. In addition to publicly releasing the dataset, we contribute a filtering pipeline that can be used to generate more data. Our filtering pipeline examines the quality of both speech audio and transcription text. We also carefully construct a ``challenging" test set, aimed at evaluating models' ability to leverage audio information to predict otherwise grammatically ambiguous punctuation. SponSpeech is available at https://github.com/GitHubAccountAnonymous/PR, along with all code for dataset building and model runs.
用于标点符号修复的自发非正式语音数据集
目前,标点符号修复模型几乎只能在结构良好的脚本语料库中进行评估。另一方面,现实世界中的 ASR 系统和后处理管道通常适用于自发语音,这些语音存在明显的不规则、口吃和语法偏差。为了解决这一差异,我们引入了 SponSpeech,这是一个标点符号还原数据集,源自非正式语音源,其中包括标点符号和音调信息。除了公开发布数据集之外,我们还提供了一个过滤管道,可用于生成更多数据。我们的过滤管道同时检查语音音频和转录文本的质量。我们还精心构建了一个 "挑战性 "测试集,旨在评估模型利用音频信息预测语法模糊标点符号的能力。SponSpeech可在https://github.com/GitHubAccountAnonymous/PR,以及用于数据集构建和模型运行的所有代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信