Meta-Whisper: Speech-Based Meta-ICL for ASR on Low-Resource Languages

Ming-Hao Hsu, Kuan Po Huang, Hung-yi Lee
{"title":"Meta-Whisper: Speech-Based Meta-ICL for ASR on Low-Resource Languages","authors":"Ming-Hao Hsu, Kuan Po Huang, Hung-yi Lee","doi":"arxiv-2409.10429","DOIUrl":null,"url":null,"abstract":"This paper presents Meta-Whisper, a novel approach to improve automatic\nspeech recognition (ASR) for low-resource languages using the Whisper model. By\nleveraging Meta In-Context Learning (Meta-ICL) and a k-Nearest Neighbors (KNN)\nalgorithm for sample selection, Meta-Whisper enhances Whisper's ability to\nrecognize speech in unfamiliar languages without extensive fine-tuning.\nExperiments on the ML-SUPERB dataset show that Meta-Whisper significantly\nreduces the Character Error Rate (CER) for low-resource languages compared to\nthe original Whisper model. This method offers a promising solution for\ndeveloping more adaptable multilingual ASR systems, particularly for languages\nwith limited resources.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents Meta-Whisper, a novel approach to improve automatic speech recognition (ASR) for low-resource languages using the Whisper model. By leveraging Meta In-Context Learning (Meta-ICL) and a k-Nearest Neighbors (KNN) algorithm for sample selection, Meta-Whisper enhances Whisper's ability to recognize speech in unfamiliar languages without extensive fine-tuning. Experiments on the ML-SUPERB dataset show that Meta-Whisper significantly reduces the Character Error Rate (CER) for low-resource languages compared to the original Whisper model. This method offers a promising solution for developing more adaptable multilingual ASR systems, particularly for languages with limited resources.
Meta-Whisper:基于语音的元智能语言(Meta-ICL),用于低资源语言的 ASR
本文介绍了 Meta-Whisper,这是一种利用 Whisper 模型改进低资源语言自动语音识别(ASR)的新方法。通过利用元上下文学习(Meta-ICL)和 k-Nearest Neighbors (KNN) 算法进行样本选择,Meta-Whisper 增强了 Whisper 识别陌生语言语音的能力,而无需进行大量微调。这种方法为开发适应性更强的多语言自动识别系统提供了一种前景广阔的解决方案,尤其适用于资源有限的语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信