Approximate controllability results of $$\psi$$ -Hilfer fractional neutral hemivariational inequalities with infinite delay via almost sectorial operators

G. Gokul, R. Udhayakumar
{"title":"Approximate controllability results of $$\\psi$$ -Hilfer fractional neutral hemivariational inequalities with infinite delay via almost sectorial operators","authors":"G. Gokul, R. Udhayakumar","doi":"10.1140/epjs/s11734-024-01326-9","DOIUrl":null,"url":null,"abstract":"<p>This manuscript explains the approximate controllability of <span>\\(\\psi\\)</span>-Hilfer fractional neutral hemivariational inequalities (<span>\\(\\psi\\)</span>-HFNHVI) with infinite delay via an almost sectorial operator. The facts related to semigroup theory, Hilfer fractional derivative (HFD), fractional calculus, the fixed point approach, and multi-valued maps are used to prove the results. Initially, we show the existence of a mild solution and exhibit that the <span>\\(\\psi\\)</span>-Hilfer fractional system is approximately controllable. Further, we have provided an example.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01326-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript explains the approximate controllability of \(\psi\)-Hilfer fractional neutral hemivariational inequalities (\(\psi\)-HFNHVI) with infinite delay via an almost sectorial operator. The facts related to semigroup theory, Hilfer fractional derivative (HFD), fractional calculus, the fixed point approach, and multi-valued maps are used to prove the results. Initially, we show the existence of a mild solution and exhibit that the \(\psi\)-Hilfer fractional system is approximately controllable. Further, we have provided an example.

通过近似扇形算子实现具有无限延迟的 $$\psi$$ -Hilfer 分数中性半变量不等式的近似可控性结果
本手稿通过一个近似扇形算子解释了具有无限延迟的(\(\psi\)-Hilfer分数中性半变量不等式(\(\psi\)-HFNHVI)的近似可控性。我们用半群理论、希尔费分数导数(HFD)、分数微积分、定点法和多值映射等相关事实来证明这些结果。首先,我们证明了温和解的存在,并证明了 \(\psi\)-Hilfer 分数系统是近似可控的。此外,我们还提供了一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信