Akif Akgul, Emre Deniz, Berkay Emin, Hüseyin Çizmeci, Yusuf Alaca, Ömer Faruk Akmeşe, Selim Özdem
{"title":"Classification of sprott chaotic systems via projection of the attractors using deep learning methods","authors":"Akif Akgul, Emre Deniz, Berkay Emin, Hüseyin Çizmeci, Yusuf Alaca, Ömer Faruk Akmeşe, Selim Özdem","doi":"10.1140/epjs/s11734-024-01329-6","DOIUrl":null,"url":null,"abstract":"<p>This study uses deep learning methods to classify the projection of the attractor’s images of five different chaotic systems. The chaotic systems addressed in the research are Sprott C, Sprott F, Sprott G, Sprott H, and Sprott M. A dataset was created for classification using the projection of attractors of these five different chaotic systems. This dataset contains time series images, and the graphs are generated based on initial conditions, Runge–Kutta 4 step size, and time length. Deep learning methods such as ResNet50, ResNet50V2, VGG19, InceptionV3, MobileNetV2, and VGG16 have been utilized for classification. This study's classification accuracy varies between 91.6% and 99.9%, depending on the problem. Therefore, this research accurately determines which chaotic system a projection of the attractors graphic image belongs to. This high accuracy demonstrates the usability of this model in analyzing chaotic systems in real-world applications. Such accuracies can be considered a powerful tool in analyzing industrial systems or other systems with complex structures. This work successfully uses deep learning methods for classifying chaotic systems. Such research could be an important step toward understanding and managing complex systems.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01329-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study uses deep learning methods to classify the projection of the attractor’s images of five different chaotic systems. The chaotic systems addressed in the research are Sprott C, Sprott F, Sprott G, Sprott H, and Sprott M. A dataset was created for classification using the projection of attractors of these five different chaotic systems. This dataset contains time series images, and the graphs are generated based on initial conditions, Runge–Kutta 4 step size, and time length. Deep learning methods such as ResNet50, ResNet50V2, VGG19, InceptionV3, MobileNetV2, and VGG16 have been utilized for classification. This study's classification accuracy varies between 91.6% and 99.9%, depending on the problem. Therefore, this research accurately determines which chaotic system a projection of the attractors graphic image belongs to. This high accuracy demonstrates the usability of this model in analyzing chaotic systems in real-world applications. Such accuracies can be considered a powerful tool in analyzing industrial systems or other systems with complex structures. This work successfully uses deep learning methods for classifying chaotic systems. Such research could be an important step toward understanding and managing complex systems.