Analysis of Microstructure and Mechanical Properties of Copper Friction Stir Welding Zone

IF 0.7 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
H. F. Wang, L. Ji
{"title":"Analysis of Microstructure and Mechanical Properties of Copper Friction Stir Welding Zone","authors":"H. F. Wang, L. Ji","doi":"10.1007/s11223-024-00673-1","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to perform friction stir welding experiments using a 2-mm-thick copper plate. The tool’s rotating speed (<i>ω</i>) and transversing speed were 800–1200 rpm and 200 mm/min, respectively. The impact of the tool’s transversing speed on the properties of welded copper was analyzed while keeping the transversing speed constant. Analyzing the experimental results, it is evident that the metallographic microstructure of the welding zone undergoes similar changes at different tool rotation speeds. Specifically, the grain in the welding core zone becomes refined, while the grain near the return side appears larger. The region is the thermomechanically affected zone and heat affected zone, which experiences less agitation from the tool but undergoes compression from the matrix metal, resulting in the grain size being larger than that of the welding zone but smaller than that of the matrix metal. The same was true for the advancing side. The tensile strength of the sample, which was 266.2 MPa, exhibited a high degree of consistency with that of the base metal when the tool’s <i>ω</i> value reached 800 rpm. The hardness of each sample exceeded that of the base metal. The hardness of the sample increased by 133.2% to 185.9 HV0.2 when the tool’s <i>ω</i> value was set at 1000 rpm, surpassing that of the base metal. The friction coefficient of each sample was lower than that of the base metal. The friction coefficient in the welding zone, which is merely 0.21, represents less than half of that in the base material, which is 0.55. The friction stir welding technique has significantly enhanced copper’s mechanical properties, facilitating its widespread application.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":"104 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-024-00673-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to perform friction stir welding experiments using a 2-mm-thick copper plate. The tool’s rotating speed (ω) and transversing speed were 800–1200 rpm and 200 mm/min, respectively. The impact of the tool’s transversing speed on the properties of welded copper was analyzed while keeping the transversing speed constant. Analyzing the experimental results, it is evident that the metallographic microstructure of the welding zone undergoes similar changes at different tool rotation speeds. Specifically, the grain in the welding core zone becomes refined, while the grain near the return side appears larger. The region is the thermomechanically affected zone and heat affected zone, which experiences less agitation from the tool but undergoes compression from the matrix metal, resulting in the grain size being larger than that of the welding zone but smaller than that of the matrix metal. The same was true for the advancing side. The tensile strength of the sample, which was 266.2 MPa, exhibited a high degree of consistency with that of the base metal when the tool’s ω value reached 800 rpm. The hardness of each sample exceeded that of the base metal. The hardness of the sample increased by 133.2% to 185.9 HV0.2 when the tool’s ω value was set at 1000 rpm, surpassing that of the base metal. The friction coefficient of each sample was lower than that of the base metal. The friction coefficient in the welding zone, which is merely 0.21, represents less than half of that in the base material, which is 0.55. The friction stir welding technique has significantly enhanced copper’s mechanical properties, facilitating its widespread application.

Abstract Image

铜摩擦搅拌焊接区的微观结构和机械性能分析
本研究旨在使用 2 毫米厚的铜板进行搅拌摩擦焊接实验。工具的旋转速度 (ω) 和横向速度分别为 800-1200 rpm 和 200 mm/min。在横向速度保持不变的情况下,分析了工具横向速度对焊接铜板性能的影响。分析实验结果可知,在不同的工具转速下,焊接区的金相显微组织发生了相似的变化。具体来说,焊芯区的晶粒变得细化,而靠近回程侧的晶粒则显得较大。该区域是热机械影响区和热影响区,其受到的工具搅拌较少,但受到基体金属的压缩,导致晶粒大小大于焊接区的晶粒大小,但小于基体金属的晶粒大小。前进侧的情况也是如此。当工具的 ω 值达到 800 rpm 时,试样的抗拉强度为 266.2 MPa,与基体金属的抗拉强度高度一致。每个试样的硬度都超过了基体金属的硬度。当刀具的 ω 值设定为 1000 rpm 时,试样的硬度增加了 133.2%,达到 185.9 HV0.2,超过了基体金属的硬度。每个样品的摩擦系数都低于母材。焊接区的摩擦系数仅为 0.21,不到母材摩擦系数 0.55 的一半。搅拌摩擦焊接技术大大提高了铜的机械性能,促进了其广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Strength of Materials
Strength of Materials MATERIALS SCIENCE, CHARACTERIZATION & TESTING-
CiteScore
1.20
自引率
14.30%
发文量
89
审稿时长
6-12 weeks
期刊介绍: Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信