Effect of Structural Anisotropy on a Fracture Mode of Ferromagnetic Steels Under Cyclic Loading

IF 0.7 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
O. P. Gopkalo, G. Ya. Bezlyudko, Yu. P. Kurash
{"title":"Effect of Structural Anisotropy on a Fracture Mode of Ferromagnetic Steels Under Cyclic Loading","authors":"O. P. Gopkalo, G. Ya. Bezlyudko, Yu. P. Kurash","doi":"10.1007/s11223-024-00666-0","DOIUrl":null,"url":null,"abstract":"<p>The potentials of nondestructive test methods are experimentally substantiated to get a cyclic loading fracture mode of ferromagnetic steels against their structural anisotropy, determined by coercive force measurements. Elastic static or cyclic loading was revealed to be consistent with a stable structure with certain anisotropy kinetics due to applied stresses. After plastic deformation, a new stable structure is formed induced by residual stresses. The anisotropy factor depended on the level of active relative stresses under elastic and elastoplastic, static, or cyclic loading. The change in kinetics direction for the anisotropy factor with elastic or elastoplastic loading defines the safe range of mechanical loading caused by reversible damage processes, as well as the ranges of accumulation risks for irreversible fatigue, high- and low-cycle fatigue and quasistatic damages giving rise to corresponding fracture modes. The nondestructive coercimetric method permits setting the metal endurance, yield limit, and transition stress from low-cycle fatigue to low-cycle quasistatic fracture.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":"4 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-024-00666-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The potentials of nondestructive test methods are experimentally substantiated to get a cyclic loading fracture mode of ferromagnetic steels against their structural anisotropy, determined by coercive force measurements. Elastic static or cyclic loading was revealed to be consistent with a stable structure with certain anisotropy kinetics due to applied stresses. After plastic deformation, a new stable structure is formed induced by residual stresses. The anisotropy factor depended on the level of active relative stresses under elastic and elastoplastic, static, or cyclic loading. The change in kinetics direction for the anisotropy factor with elastic or elastoplastic loading defines the safe range of mechanical loading caused by reversible damage processes, as well as the ranges of accumulation risks for irreversible fatigue, high- and low-cycle fatigue and quasistatic damages giving rise to corresponding fracture modes. The nondestructive coercimetric method permits setting the metal endurance, yield limit, and transition stress from low-cycle fatigue to low-cycle quasistatic fracture.

Abstract Image

结构各向异性对循环载荷下铁磁钢断裂模式的影响
通过实验证实了无损检测方法的潜力,从而获得了铁磁钢的循环加载断裂模式与结构各向异性之间的关系。结果表明,弹性静态或循环加载与稳定结构一致,并因外加应力而具有一定的各向异性动力学。塑性变形后,新的稳定结构在残余应力的作用下形成。各向异性因子取决于弹性和弹塑性、静态或循环加载下的有效相对应力水平。各向异性因子随弹性或弹塑性载荷的动力学方向变化,确定了由可逆损伤过程引起的机械载荷的安全范围,以及不可逆转疲劳、高循环和低循环疲劳以及引起相应断裂模式的准静态损伤的累积风险范围。无损矫顽法可设定金属耐久性、屈服极限以及从低周期疲劳到低周期准静态断裂的过渡应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Strength of Materials
Strength of Materials MATERIALS SCIENCE, CHARACTERIZATION & TESTING-
CiteScore
1.20
自引率
14.30%
发文量
89
审稿时长
6-12 weeks
期刊介绍: Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信