Machine listening in a neonatal intensive care unit

Modan TailleurLS2N, Nantes Univ - ECN, LS2N - équipe SIMS, Vincent LostanlenLS2N, LS2N - équipe SIMS, Nantes Univ - ECN, Jean-Philippe RivièreNantes Univ, Nantes Univ - UFR FLCE, LS2N, LS2N - équipe PACCE, Pierre Aumond
{"title":"Machine listening in a neonatal intensive care unit","authors":"Modan TailleurLS2N, Nantes Univ - ECN, LS2N - équipe SIMS, Vincent LostanlenLS2N, LS2N - équipe SIMS, Nantes Univ - ECN, Jean-Philippe RivièreNantes Univ, Nantes Univ - UFR FLCE, LS2N, LS2N - équipe PACCE, Pierre Aumond","doi":"arxiv-2409.11439","DOIUrl":null,"url":null,"abstract":"Oxygenators, alarm devices, and footsteps are some of the most common sound\nsources in a hospital. Detecting them has scientific value for environmental\npsychology but comes with challenges of its own: namely, privacy preservation\nand limited labeled data. In this paper, we address these two challenges via a\ncombination of edge computing and cloud computing. For privacy preservation, we\nhave designed an acoustic sensor which computes third-octave spectrograms on\nthe fly instead of recording audio waveforms. For sample-efficient machine\nlearning, we have repurposed a pretrained audio neural network (PANN) via\nspectral transcoding and label space adaptation. A small-scale study in a\nneonatological intensive care unit (NICU) confirms that the time series of\ndetected events align with another modality of measurement: i.e., electronic\nbadges for parents and healthcare professionals. Hence, this paper demonstrates\nthe feasibility of polyphonic machine listening in a hospital ward while\nguaranteeing privacy by design.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygenators, alarm devices, and footsteps are some of the most common sound sources in a hospital. Detecting them has scientific value for environmental psychology but comes with challenges of its own: namely, privacy preservation and limited labeled data. In this paper, we address these two challenges via a combination of edge computing and cloud computing. For privacy preservation, we have designed an acoustic sensor which computes third-octave spectrograms on the fly instead of recording audio waveforms. For sample-efficient machine learning, we have repurposed a pretrained audio neural network (PANN) via spectral transcoding and label space adaptation. A small-scale study in a neonatological intensive care unit (NICU) confirms that the time series of detected events align with another modality of measurement: i.e., electronic badges for parents and healthcare professionals. Hence, this paper demonstrates the feasibility of polyphonic machine listening in a hospital ward while guaranteeing privacy by design.
新生儿重症监护室的机器监听
氧气机、报警装置和脚步声是医院中最常见的声音来源。检测它们对环境心理学具有科学价值,但同时也面临着自身的挑战:即隐私保护和有限的标记数据。在本文中,我们通过边缘计算和云计算的结合来应对这两个挑战。为了保护隐私,我们设计了一种声学传感器,它可以即时计算第三倍频程频谱图,而不是记录音频波形。为了提高机器学习的采样效率,我们重新利用了预训练音频神经网络(PANN)进行频谱转码和标签空间适应。在新生儿重症监护室(NICU)进行的一项小规模研究证实,检测到的事件时间序列与另一种测量方式(即家长和医护人员的电子胸牌)一致。因此,本文证明了在医院病房中使用多声部机器监听的可行性,同时通过设计保证了隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信