ASR Benchmarking: Need for a More Representative Conversational Dataset

Gaurav Maheshwari, Dmitry Ivanov, Théo Johannet, Kevin El Haddad
{"title":"ASR Benchmarking: Need for a More Representative Conversational Dataset","authors":"Gaurav Maheshwari, Dmitry Ivanov, Théo Johannet, Kevin El Haddad","doi":"arxiv-2409.12042","DOIUrl":null,"url":null,"abstract":"Automatic Speech Recognition (ASR) systems have achieved remarkable\nperformance on widely used benchmarks such as LibriSpeech and Fleurs. However,\nthese benchmarks do not adequately reflect the complexities of real-world\nconversational environments, where speech is often unstructured and contains\ndisfluencies such as pauses, interruptions, and diverse accents. In this study,\nwe introduce a multilingual conversational dataset, derived from TalkBank,\nconsisting of unstructured phone conversation between adults. Our results show\na significant performance drop across various state-of-the-art ASR models when\ntested in conversational settings. Furthermore, we observe a correlation\nbetween Word Error Rate and the presence of speech disfluencies, highlighting\nthe critical need for more realistic, conversational ASR benchmarks.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic Speech Recognition (ASR) systems have achieved remarkable performance on widely used benchmarks such as LibriSpeech and Fleurs. However, these benchmarks do not adequately reflect the complexities of real-world conversational environments, where speech is often unstructured and contains disfluencies such as pauses, interruptions, and diverse accents. In this study, we introduce a multilingual conversational dataset, derived from TalkBank, consisting of unstructured phone conversation between adults. Our results show a significant performance drop across various state-of-the-art ASR models when tested in conversational settings. Furthermore, we observe a correlation between Word Error Rate and the presence of speech disfluencies, highlighting the critical need for more realistic, conversational ASR benchmarks.
ASR 基准测试:需要更具代表性的对话数据集
自动语音识别(ASR)系统在 LibriSpeech 和 Fleurs 等广泛使用的基准测试中表现出色。然而,这些基准并不能充分反映真实世界对话环境的复杂性,因为对话环境中的语音通常是非结构化的,并包含停顿、中断和不同口音等不流畅现象。在这项研究中,我们引入了一个多语言会话数据集,该数据集来自 TalkBank,由成人之间的非结构化电话会话组成。我们的研究结果表明,在会话环境中进行测试时,各种最先进的 ASR 模型的性能明显下降。此外,我们还观察到单词错误率(Word Error Rate)与语音不流畅(speech disfluencies)之间存在相关性,这凸显了对更真实的会话式 ASR 基准的迫切需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信