{"title":"New insights into the regulation and roles of phosphatidylinositol 3,4-bisphosphate","authors":"Junya Hasegawa","doi":"10.1093/jb/mvae063","DOIUrl":null,"url":null,"abstract":"Phosphoinositides (PIPs) are phospholipids and components of the cellular membrane. In mammals, seven phosphorylated derivatives of PIPs have been identified. Among them, phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] is produced by lipid phosphatases (e.g., SHIP2) or by lipid kinases PI3KC2α and PI3KC2β. Although PI(3,4)P2 is undetectable in normal mouse or human tissues and common cell lines, it appears in a mouse prostate cancer model and in cells exposed to oxidative stress, indicating that PI(3,4)P2 is involved in the pathogenesis of some diseases. Here, I summarize recent findings on the cellular roles and pathophysiological significance of PI(3,4)P2.","PeriodicalId":22605,"journal":{"name":"The Journal of Biochemistry","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jb/mvae063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphoinositides (PIPs) are phospholipids and components of the cellular membrane. In mammals, seven phosphorylated derivatives of PIPs have been identified. Among them, phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] is produced by lipid phosphatases (e.g., SHIP2) or by lipid kinases PI3KC2α and PI3KC2β. Although PI(3,4)P2 is undetectable in normal mouse or human tissues and common cell lines, it appears in a mouse prostate cancer model and in cells exposed to oxidative stress, indicating that PI(3,4)P2 is involved in the pathogenesis of some diseases. Here, I summarize recent findings on the cellular roles and pathophysiological significance of PI(3,4)P2.