An accurate vector optically pumped magnetometer with microwave-driven Rabi frequency measurements

Christopher Kiehl, Thanmay S. Menon, Svenja Knappe, Tobias Thiele, Cindy A. Regal
{"title":"An accurate vector optically pumped magnetometer with microwave-driven Rabi frequency measurements","authors":"Christopher Kiehl, Thanmay S. Menon, Svenja Knappe, Tobias Thiele, Cindy A. Regal","doi":"arxiv-2409.09885","DOIUrl":null,"url":null,"abstract":"Robust calibration of vector optically pumped magnetometers (OPMs) is a\nnontrivial task, but increasingly important for applications requiring\nhigh-accuracy such as magnetic navigation, geophysics research, and space\nexploration. Here, we showcase a vector OPM that utilizes Rabi oscillations\ndriven between the hyperfine manifolds of $^{87}$Rb to measure the direction of\na DC magnetic field against the polarization ellipse structure of a microwave\nfield. By relying solely on atomic measurements -- free-induction decay (FID)\nsignals and Rabi measurements across multiple atomic transitions -- this sensor\ncan detect drift in the microwave vector reference and compensate for\nsystematic shifts caused by off-resonant driving, nonlinear Zeeman (NLZ)\neffects, and buffer gas collisions. To facilitate dead-zone-free operation, we\nalso introduce a novel Rabi measurement that utilizes dressed-state resonances\nthat appear during simultaneous Larmor precession and Rabi driving (SPaR).\nThese measurements, performed within a microfabricated vapor cell platform,\nachieve an average vector accuracy of 0.46 mrad and vector sensitivities down\nto 11 $\\mu$rad$/\\sqrt{\\text{Hz}}$ for geomagnetic field strengths near 50\n$\\mu$T. This performance surpasses the challenging 1-degree (17 mrad) accuracy\nthreshold of several contemporary OPM methods utilizing atomic vapors with an\nelectromagnetic vector reference.","PeriodicalId":501039,"journal":{"name":"arXiv - PHYS - Atomic Physics","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robust calibration of vector optically pumped magnetometers (OPMs) is a nontrivial task, but increasingly important for applications requiring high-accuracy such as magnetic navigation, geophysics research, and space exploration. Here, we showcase a vector OPM that utilizes Rabi oscillations driven between the hyperfine manifolds of $^{87}$Rb to measure the direction of a DC magnetic field against the polarization ellipse structure of a microwave field. By relying solely on atomic measurements -- free-induction decay (FID) signals and Rabi measurements across multiple atomic transitions -- this sensor can detect drift in the microwave vector reference and compensate for systematic shifts caused by off-resonant driving, nonlinear Zeeman (NLZ) effects, and buffer gas collisions. To facilitate dead-zone-free operation, we also introduce a novel Rabi measurement that utilizes dressed-state resonances that appear during simultaneous Larmor precession and Rabi driving (SPaR). These measurements, performed within a microfabricated vapor cell platform, achieve an average vector accuracy of 0.46 mrad and vector sensitivities down to 11 $\mu$rad$/\sqrt{\text{Hz}}$ for geomagnetic field strengths near 50 $\mu$T. This performance surpasses the challenging 1-degree (17 mrad) accuracy threshold of several contemporary OPM methods utilizing atomic vapors with an electromagnetic vector reference.
精确的矢量光泵磁强计,可进行微波驱动的拉比频率测量
矢量光泵浦磁力计(OPM)的稳健校准是一项非同小可的任务,但对于磁导航、地球物理研究和太空探索等要求高精度的应用来说却越来越重要。在这里,我们展示了一种矢量 OPM,它利用 $^{87}$Rb 的超精细流形之间驱动的拉比振荡来测量直流磁场与微波场偏振椭圆结构的方向。通过完全依赖原子测量--自由感应衰变(FID)信号和多个原子跃迁的拉比测量--该传感器可以检测微波矢量基准的漂移,并补偿由于非共振驱动、非线性泽曼(NLZ)效应和缓冲气体碰撞引起的系统偏移。为了促进无死角操作,我们还引入了一种新的拉比测量方法,利用在拉莫尔前驱和拉比驱动(SPaR)过程中出现的穿态共振进行测量。这些测量是在微加工蒸气电池平台内进行的,在地磁场强度接近50\\mu$T时,平均矢量精度为0.46 mrad,矢量灵敏度低至11 $\mu$rad$/\sqrt\{text{Hz}}$。这一性能超过了当代几种利用原子蒸汽和电磁矢量参考的 OPM 方法所面临的 1 度(17 mrad)精度阈值的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信