Proximity-Induced Topological Hall Effect in Fe-doped Monolayer WSe2

Mengqi Fang, Siwei Chen, Chunli Tang, Zitao Tang, Min-Yeong Choi, Jae Hyuck Jang, Hee-Suk Chung, Maya Narayanan Nair, Wencan Jin, Eui-Hyeok Yang
{"title":"Proximity-Induced Topological Hall Effect in Fe-doped Monolayer WSe2","authors":"Mengqi Fang, Siwei Chen, Chunli Tang, Zitao Tang, Min-Yeong Choi, Jae Hyuck Jang, Hee-Suk Chung, Maya Narayanan Nair, Wencan Jin, Eui-Hyeok Yang","doi":"arxiv-2409.11222","DOIUrl":null,"url":null,"abstract":"The topological Hall effect (THE) has attracted great attention since it\nprovides an important probe of the interaction between electron and topological\nspin textures. THE has been considered an experimental signature of the\ntopological spin texture of skyrmions. While THE has been widely reported in\nchiral magnets, oxide heterostructures, and hybrid systems such as\nferromagnet/heavy metal and ferromagnet/topological insulators, the study of\nmonolayer structures is lacking, hindering the understanding of noncollinear\nspin textures at the atomically thin scale. Here, we show a discernible THE via\nproximity coupling of Fe-doped monolayer WSe2 (Fe:WSe2) synthesized using\nchemical vapor deposition on a Pt Hall bar. Multiple characterization methods\nwere employed to demonstrate that Fe atoms substitutionally replace W atoms,\nmaking a two-dimensional (2D) van der Waals (vdW) dilute magnetic semiconductor\n(DMS) at room temperature. Distinct from the intrinsic anomalous Hall effect,\nwe found the transverse Hall resistivity of Fe:WSe2 displaying two additional\ndip/peak features in the temperature-dependent measurements, consistent with\nthe contribution of THE. The topological Hall effect is attributed to the\nmagnetic skyrmions that emerge from the Dzyaloshinskii-Moriya interactions at\nthe Fe:WSe2 and Pt interface. Our work shows that a DMS synthesized from 2D vdW\ntransition metal dichalcogenides is promising for realizing magnetic skyrmions\nand spintronic applications.","PeriodicalId":501039,"journal":{"name":"arXiv - PHYS - Atomic Physics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The topological Hall effect (THE) has attracted great attention since it provides an important probe of the interaction between electron and topological spin textures. THE has been considered an experimental signature of the topological spin texture of skyrmions. While THE has been widely reported in chiral magnets, oxide heterostructures, and hybrid systems such as ferromagnet/heavy metal and ferromagnet/topological insulators, the study of monolayer structures is lacking, hindering the understanding of noncollinear spin textures at the atomically thin scale. Here, we show a discernible THE via proximity coupling of Fe-doped monolayer WSe2 (Fe:WSe2) synthesized using chemical vapor deposition on a Pt Hall bar. Multiple characterization methods were employed to demonstrate that Fe atoms substitutionally replace W atoms, making a two-dimensional (2D) van der Waals (vdW) dilute magnetic semiconductor (DMS) at room temperature. Distinct from the intrinsic anomalous Hall effect, we found the transverse Hall resistivity of Fe:WSe2 displaying two additional dip/peak features in the temperature-dependent measurements, consistent with the contribution of THE. The topological Hall effect is attributed to the magnetic skyrmions that emerge from the Dzyaloshinskii-Moriya interactions at the Fe:WSe2 and Pt interface. Our work shows that a DMS synthesized from 2D vdW transition metal dichalcogenides is promising for realizing magnetic skyrmions and spintronic applications.
铁掺杂单层 WSe2 中近距离诱导的拓扑霍尔效应
拓扑霍尔效应(THE)为电子和拓扑自旋纹理之间的相互作用提供了一个重要的探测手段,因此备受关注。拓扑霍尔效应被认为是天离子拓扑自旋纹理的实验特征。虽然手性磁体、氧化物异质结构以及铁磁体/重金属和铁磁体/拓扑绝缘体等混合系统中都广泛报道了 THE,但对单层结构的研究却很缺乏,这阻碍了人们对原子薄尺度上的非共线性自旋纹理的理解。在这里,我们展示了在铂霍尔条上使用化学气相沉积法合成的掺铁单层 WSe2 (Fe:WSe2)的可辨认 THE viaproximity 耦合。采用多种表征方法证明了铁原子取代了 W 原子,从而在室温下形成了二维(2D)范德华(vdW)稀磁半导体(DMS)。与本征反常霍尔效应不同,我们发现在随温度变化的测量中,Fe:WSe2 的横向霍尔电阻率显示出两个额外的倾角/峰值特征,这与 THE 的贡献是一致的。拓扑霍尔效应归因于 Fe:WSe2 和铂界面上的 Dzyaloshinskii-Moriya 相互作用产生的磁天幕。我们的工作表明,由二维 vdW 过渡金属二掺杂物合成的 DMS 很有希望实现磁天幕和自旋电子应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信