MALADY: Multiclass Active Learning with Auction Dynamics on Graphs

Gokul Bhusal, Kevin Miller, Ekaterina Merkurjev
{"title":"MALADY: Multiclass Active Learning with Auction Dynamics on Graphs","authors":"Gokul Bhusal, Kevin Miller, Ekaterina Merkurjev","doi":"arxiv-2409.09475","DOIUrl":null,"url":null,"abstract":"Active learning enhances the performance of machine learning methods,\nparticularly in semi-supervised cases, by judiciously selecting a limited\nnumber of unlabeled data points for labeling, with the goal of improving the\nperformance of an underlying classifier. In this work, we introduce the\nMulticlass Active Learning with Auction Dynamics on Graphs (MALADY) framework\nwhich leverages the auction dynamics algorithm on similarity graphs for\nefficient active learning. In particular, we generalize the auction dynamics\nalgorithm on similarity graphs for semi-supervised learning in [24] to\nincorporate a more general optimization functional. Moreover, we introduce a\nnovel active learning acquisition function that uses the dual variable of the\nauction algorithm to measure the uncertainty in the classifier to prioritize\nqueries near the decision boundaries between different classes. Lastly, using\nexperiments on classification tasks, we evaluate the performance of our\nproposed method and show that it exceeds that of comparison algorithms.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Active learning enhances the performance of machine learning methods, particularly in semi-supervised cases, by judiciously selecting a limited number of unlabeled data points for labeling, with the goal of improving the performance of an underlying classifier. In this work, we introduce the Multiclass Active Learning with Auction Dynamics on Graphs (MALADY) framework which leverages the auction dynamics algorithm on similarity graphs for efficient active learning. In particular, we generalize the auction dynamics algorithm on similarity graphs for semi-supervised learning in [24] to incorporate a more general optimization functional. Moreover, we introduce a novel active learning acquisition function that uses the dual variable of the auction algorithm to measure the uncertainty in the classifier to prioritize queries near the decision boundaries between different classes. Lastly, using experiments on classification tasks, we evaluate the performance of our proposed method and show that it exceeds that of comparison algorithms.
MALADY:利用图形上的拍卖动态进行多类主动学习
主动学习可以提高机器学习方法的性能,尤其是在半监督情况下,它可以明智地选择数量有限的未标记数据点进行标记,从而提高底层分类器的性能。在这项工作中,我们介绍了图形拍卖动态多类主动学习(Multiclass Active Learning with Auction Dynamics on Graphs,MALADY)框架,该框架利用相似性图形上的拍卖动态算法实现高效的主动学习。特别是,我们对 [24] 中用于半监督学习的相似性图上拍卖动态算法进行了概括,纳入了一个更通用的优化函数。此外,我们还引入了一种新的主动学习获取函数,它使用拍卖算法的对偶变量来衡量分类器的不确定性,从而优先处理不同类别之间决策边界附近的查询。最后,通过分类任务的实验,我们评估了我们提出的方法的性能,结果表明它超过了比较算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信