Tumorigencity decrease in Bcl-xL deficient MDCK cells ensuring the safety for influenza vaccine production

Jiahao Zheng, Boran Li, Lanxin Jia, Jiayou Zhang, Zheng Gong, Yang Le, Xuanxuan Nian, Xuedan Li, Bo Liu, Daiguan Yu, Changgui Li, Zhegang Zhang
{"title":"Tumorigencity decrease in Bcl-xL deficient MDCK cells ensuring the safety for influenza vaccine production","authors":"Jiahao Zheng, Boran Li, Lanxin Jia, Jiayou Zhang, Zheng Gong, Yang Le, Xuanxuan Nian, Xuedan Li, Bo Liu, Daiguan Yu, Changgui Li, Zhegang Zhang","doi":"10.1101/2024.09.14.613056","DOIUrl":null,"url":null,"abstract":"Madin-Darby canine kidney (MDCK) cells are the recognized cell strain for influenza vaccine production. However, the tumorigenic potential of MDCK cells raises concerns about their use in biological product manufacturing. To reduce MDCK cells’ tumorigenicity and ensure the safety of influenza vaccine production, a B-cell lymphoma extra-large (Bcl-xL) gene, which plays a pivotal role in apoptosis regulation, was knocked-out in original MDCK cells by CRISPR-Cas9 gene editing technology, so that a homozygous MDCK-Bcl-xL-/- cell strain was acquired and named as BY-02. Compared with original MDCK cells, the proliferation and migration ability of BY-02 were significantly reduced, while apoptosis level was significantly increased, the endogenous mitochondrial apoptotic pathway were also modulated after Bcl-xL knock-out in MDCK cells. For tumor formation assays in nude mouse tests, all ten mice injected with original MDCK cells presented tumors growth in the injection site, in contrast to only one mouse injected with BY-02 cells presented tumors growth. These findings suggest that Bcl-xL knock-down is an effective strategy to inhibit tumor formation in MDCK cells, making BY-02 a promising genetically engineered cell strain for influenza vaccine production.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.14.613056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Madin-Darby canine kidney (MDCK) cells are the recognized cell strain for influenza vaccine production. However, the tumorigenic potential of MDCK cells raises concerns about their use in biological product manufacturing. To reduce MDCK cells’ tumorigenicity and ensure the safety of influenza vaccine production, a B-cell lymphoma extra-large (Bcl-xL) gene, which plays a pivotal role in apoptosis regulation, was knocked-out in original MDCK cells by CRISPR-Cas9 gene editing technology, so that a homozygous MDCK-Bcl-xL-/- cell strain was acquired and named as BY-02. Compared with original MDCK cells, the proliferation and migration ability of BY-02 were significantly reduced, while apoptosis level was significantly increased, the endogenous mitochondrial apoptotic pathway were also modulated after Bcl-xL knock-out in MDCK cells. For tumor formation assays in nude mouse tests, all ten mice injected with original MDCK cells presented tumors growth in the injection site, in contrast to only one mouse injected with BY-02 cells presented tumors growth. These findings suggest that Bcl-xL knock-down is an effective strategy to inhibit tumor formation in MDCK cells, making BY-02 a promising genetically engineered cell strain for influenza vaccine production.
降低 Bcl-xL 缺陷 MDCK 细胞的致瘤性,确保流感疫苗生产的安全性
麦丁-达比犬肾细胞(MDCK)是公认的生产流感疫苗的细胞株。然而,MDCK 细胞的潜在致瘤性引起了人们对其在生物制品生产中使用的担忧。为了降低 MDCK 细胞的致瘤性,确保流感疫苗生产的安全性,我们利用 CRISPR-Cas9 基因编辑技术敲除了原始 MDCK 细胞中在细胞凋亡调控中起关键作用的 B 细胞淋巴瘤特大号(Bcl-xL)基因,从而获得了同源的 MDCK-Bcl-xL-/- 细胞株,并将其命名为 BY-02。与原来的 MDCK 细胞相比,BY-02 的增殖和迁移能力明显降低,而细胞凋亡水平则明显升高,Bcl-xL 基因敲除后,MDCK 细胞的内源性线粒体凋亡途径也发生了改变。在裸鼠肿瘤形成试验中,注射原始MDCK细胞的10只小鼠注射部位均出现肿瘤生长,而注射BY-02细胞的小鼠只有1只出现肿瘤生长。这些研究结果表明,Bcl-xL基因敲除是抑制MDCK细胞肿瘤形成的有效策略,因此BY-02是一种很有希望用于生产流感疫苗的基因工程细胞株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信