HP1α-driven Phase Separation and Repair Pathway Choice in Response to Heterochromatin Damage

Darshika Bohra, Aprotim Mazumder
{"title":"HP1α-driven Phase Separation and Repair Pathway Choice in Response to Heterochromatin Damage","authors":"Darshika Bohra, Aprotim Mazumder","doi":"10.1101/2024.09.16.613371","DOIUrl":null,"url":null,"abstract":"Double-strand breaks (DSBs) pose significant threat to genomic stability and need immediate attention from DNA Damage Response (DDR) machinery involved in Homologous Recombination (HR) or Non-homologous end joining (NHEJ). DDR in heterochromatin is challenging owing to the distinct chromatin organization. Heterochromatin Protein 1 (HP1) isoforms that contribute significantly to the organization of heterochromatin, have been shown to be involved in DDR. Mammalian HP1 has three isoforms, HP1α, HP1β, and HP1γ, which possess significant homology and yet have distinct functions. HP1α is the only isoform known to undergo liquid-liquid phase separation. We show that the minute-scale dynamics of HP1α and HP1β differ dramatically and they promote differential recruitment of HR vs. NHEJ factors at the sites of laser-induced clustered DSBs. Perturbing HP1α phase-separation abrogates both the recruitment of HR factors and readouts of HR. Our study provides a link between phase-separation and DDR-centric roles of HP1α and hints at spatial partitioning of repair pathways in response to damage in heterochromatin.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.16.613371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Double-strand breaks (DSBs) pose significant threat to genomic stability and need immediate attention from DNA Damage Response (DDR) machinery involved in Homologous Recombination (HR) or Non-homologous end joining (NHEJ). DDR in heterochromatin is challenging owing to the distinct chromatin organization. Heterochromatin Protein 1 (HP1) isoforms that contribute significantly to the organization of heterochromatin, have been shown to be involved in DDR. Mammalian HP1 has three isoforms, HP1α, HP1β, and HP1γ, which possess significant homology and yet have distinct functions. HP1α is the only isoform known to undergo liquid-liquid phase separation. We show that the minute-scale dynamics of HP1α and HP1β differ dramatically and they promote differential recruitment of HR vs. NHEJ factors at the sites of laser-induced clustered DSBs. Perturbing HP1α phase-separation abrogates both the recruitment of HR factors and readouts of HR. Our study provides a link between phase-separation and DDR-centric roles of HP1α and hints at spatial partitioning of repair pathways in response to damage in heterochromatin.
异染色质损伤时HP1α驱动的相分离和修复途径选择
双链断裂(DSB)对基因组的稳定性构成重大威胁,需要立即引起参与同源重组(HR)或非同源末端连接(NHEJ)的 DNA 损伤应答(DDR)机制的注意。由于染色质组织结构不同,异染色质中的 DDR 具有挑战性。异染色质蛋白 1(HP1)异构体对异染色质的组织有重大贡献,已被证明参与了 DDR。哺乳动物的 HP1 有三种同工形式,即 HP1α、HP1β 和 HP1γ,它们具有显著的同源性,但功能各不相同。HP1α 是目前已知的唯一能进行液-液相分离的同工酶。我们的研究表明,HP1α和HP1β的微小尺度动态差异显著,它们在激光诱导的聚集DSB位点促进了HR因子和NHEJ因子的不同招募。扰乱HP1α的相位分离会抑制HR因子的招募和HR的读出。我们的研究提供了HP1α相分离和以DDR为中心的作用之间的联系,并提示了异染色质损伤时修复途径的空间分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信