A PDE1 inhibitor, vinpocetine, ameliorates epithelial-mesenchymal transition and renal fibrosis in adenine-induced chronic kidney injury in rats by targeting the DNMT1/Klotho/β-catenin/Snail 1 and MMP-7 pathways

Amira Mohammed Abdelfattah, Zeinab A. Mohammed, Aliaa Talaat, Walaa Samy, Mamdouh Eldesoqui, Reham I. Elgarhi
{"title":"A PDE1 inhibitor, vinpocetine, ameliorates epithelial-mesenchymal transition and renal fibrosis in adenine-induced chronic kidney injury in rats by targeting the DNMT1/Klotho/β-catenin/Snail 1 and MMP-7 pathways","authors":"Amira Mohammed Abdelfattah, Zeinab A. Mohammed, Aliaa Talaat, Walaa Samy, Mamdouh Eldesoqui, Reham I. Elgarhi","doi":"10.1007/s00210-024-03393-0","DOIUrl":null,"url":null,"abstract":"<p>Tubulointerstitial fibrosis (TIF) is present with chronic kidney disease (CKD). Vinpocetine (Vinpo) is used for treating cerebrovascular deficits, exhibiting some kidney-beneficial effects; however, its role in TIF is uncertain. So, the aim of this study was to investigate its potential impact on adenine-induced fibrotic CKD and explore the underlying mechanistic aspects. Eighteen male Wistar rats were categorized into three groups (<i>n</i> = 6 each). Group I was kept as controls and given saline; group II received adenine (300 mg/kg, twice weekly, i.p.) for induction of the CKD model; and group III was administered Vinpo (20 mg/kg/d, orally) concurrently with adenine. All treatments were administered for 4 weeks. Vinpo revealed an improvement in renal function and an alleviation of inflammation triggered by adenine via diminishing serum tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) levels. Further, Vinpo repressed the epithelial-mesenchymal transition (EMT) with preserved E-cadherin mRNA expression and lowered gene and immune expression of fibronectin and vimentin, respectively, besides attenuating the elevated G2/M arrest-related molecules (renal Ki67 protein contents and p21 gene expression). Renal pathological alterations caused by adenine were attenuated upon Vinpo administration. Interestingly, Vinpo suppressed abnormal renal β-catenin immunoreactivity, Snail 1, and MMP-7 gene expression while simultaneously restored Klotho protein expression by downregulating DNA methyltransferase 1 enzyme (DNMT1) protein expression in the kidney. These data indicated that Vinpo effectively mitigated EMT and G2/M arrest-induced renal fibrosis in adenine-induced CKD rats by targeting DNMT1-associated Klotho suppression, subsequently inhibiting β-catenin and its fibrotic downstream genes.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-schmiedebergs Archives of Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00210-024-03393-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tubulointerstitial fibrosis (TIF) is present with chronic kidney disease (CKD). Vinpocetine (Vinpo) is used for treating cerebrovascular deficits, exhibiting some kidney-beneficial effects; however, its role in TIF is uncertain. So, the aim of this study was to investigate its potential impact on adenine-induced fibrotic CKD and explore the underlying mechanistic aspects. Eighteen male Wistar rats were categorized into three groups (n = 6 each). Group I was kept as controls and given saline; group II received adenine (300 mg/kg, twice weekly, i.p.) for induction of the CKD model; and group III was administered Vinpo (20 mg/kg/d, orally) concurrently with adenine. All treatments were administered for 4 weeks. Vinpo revealed an improvement in renal function and an alleviation of inflammation triggered by adenine via diminishing serum tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) levels. Further, Vinpo repressed the epithelial-mesenchymal transition (EMT) with preserved E-cadherin mRNA expression and lowered gene and immune expression of fibronectin and vimentin, respectively, besides attenuating the elevated G2/M arrest-related molecules (renal Ki67 protein contents and p21 gene expression). Renal pathological alterations caused by adenine were attenuated upon Vinpo administration. Interestingly, Vinpo suppressed abnormal renal β-catenin immunoreactivity, Snail 1, and MMP-7 gene expression while simultaneously restored Klotho protein expression by downregulating DNA methyltransferase 1 enzyme (DNMT1) protein expression in the kidney. These data indicated that Vinpo effectively mitigated EMT and G2/M arrest-induced renal fibrosis in adenine-induced CKD rats by targeting DNMT1-associated Klotho suppression, subsequently inhibiting β-catenin and its fibrotic downstream genes.

Abstract Image

PDE1 抑制剂长春西汀通过靶向 DNMT1/Klotho/β-catenin/Snail 1 和 MMP-7 通路,改善腺嘌呤诱导的大鼠慢性肾损伤中的上皮-间充质转化和肾纤维化现象
慢性肾脏病(CKD)患者会出现肾小管间质纤维化(TIF)。长春西汀(Vinpocetine,Vinpo)用于治疗脑血管功能障碍,具有一定的益肾作用,但其在 TIF 中的作用尚不确定。因此,本研究旨在调查其对腺嘌呤诱导的纤维化慢性肾脏病的潜在影响,并探索其背后的机理。18 只雄性 Wistar 大鼠被分为三组(每组 6 只)。I 组为对照组,给予生理盐水;II 组接受腺嘌呤(300 毫克/千克,每周两次,静脉注射)诱导 CKD 模型;III 组在给予腺嘌呤的同时给予 Vinpo(20 毫克/千克/天,口服)。所有治疗均持续 4 周。Vinpo通过降低血清肿瘤坏死因子-α(TNF-α)和白细胞介素6(IL-6)的水平,改善了肾功能并减轻了腺嘌呤引发的炎症。此外,Vinpo 还抑制了上皮-间质转化(EMT),保留了 E-cadherin mRNA 的表达,降低了纤维连接蛋白和波形蛋白的基因和免疫表达,此外还减轻了 G2/M 停滞相关分子(肾 Ki67 蛋白含量和 p21 基因表达)的升高。服用 Vinpo 后,腺嘌呤引起的肾脏病理改变有所减轻。有趣的是,Vinpo抑制了肾脏β-catenin免疫活性、Snail 1和MMP-7基因的异常表达,同时通过下调肾脏中DNA甲基转移酶1酶(DNMT1)蛋白的表达,恢复了Klotho蛋白的表达。这些数据表明,Vinpo通过靶向抑制与DNMT1相关的Klotho,进而抑制β-catenin及其纤维化下游基因,有效减轻了腺嘌呤诱导的CKD大鼠的EMT和G2/M停滞诱导的肾纤维化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信