Investigating the protective properties of Panax ginseng and its constituents against biotoxins and metal toxicity: a mechanistic review

Maryam Rameshrad, Zahra Memariani, Karim Naraki, Hossein Hosseinzadeh
{"title":"Investigating the protective properties of Panax ginseng and its constituents against biotoxins and metal toxicity: a mechanistic review","authors":"Maryam Rameshrad, Zahra Memariani, Karim Naraki, Hossein Hosseinzadeh","doi":"10.1007/s00210-024-03410-2","DOIUrl":null,"url":null,"abstract":"<p>Natural toxins are toxic substances produced by living microorganisms and cause harmful effects to other creatures, but not the organisms themselves. Based on the sources, they are classified into fungal, microbial, herbal, algae, and animal biotoxins. Metals, the oldest toxicants, are not created or destroyed by human industry as elements, just concentrated in the biosphere. An antidote can counteract the toxic effects of a drug or toxin or mitigate the adverse effects of a harmful substance. The potential antidote effects of <i>Panax ginseng</i> in organ toxicity have been proved by many scientific research projects. Herein, we are going to gather a comprehensive mechanistic review of the antidotal effects of ginseng and its main constituents against natural toxins and metal toxicity. In this regard, a literate search has been done in PubMed/Medline, Science Direct, and Scopus from 2000 until 2024. The gathered data showed the protective impacts of this golden plant and its secondary metabolites against aflatoxin, deoxynivalenol, three-nitro propionic acid, ochratoxin A, lipopolysaccharide, nicotine, aconite, domoic acid, α-synuclein, amyloid β, and glutamate as well as aluminum, cadmium, chrome, copper, iron, and lead. These antidotal effects occur by multi-functional mechanisms. It may be attributed to antioxidant, anti-inflammatory, and anti-apoptotic effects. Future research directions on the antidotal effects of ginseng against natural toxins and metal toxicity involve broadening the scope of studies to include a wider range of toxins and metals, exploring synergistic interactions with other natural compounds, and conducting more human clinical trials to validate the efficacy and safety of ginseng-based treatments.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-schmiedebergs Archives of Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00210-024-03410-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Natural toxins are toxic substances produced by living microorganisms and cause harmful effects to other creatures, but not the organisms themselves. Based on the sources, they are classified into fungal, microbial, herbal, algae, and animal biotoxins. Metals, the oldest toxicants, are not created or destroyed by human industry as elements, just concentrated in the biosphere. An antidote can counteract the toxic effects of a drug or toxin or mitigate the adverse effects of a harmful substance. The potential antidote effects of Panax ginseng in organ toxicity have been proved by many scientific research projects. Herein, we are going to gather a comprehensive mechanistic review of the antidotal effects of ginseng and its main constituents against natural toxins and metal toxicity. In this regard, a literate search has been done in PubMed/Medline, Science Direct, and Scopus from 2000 until 2024. The gathered data showed the protective impacts of this golden plant and its secondary metabolites against aflatoxin, deoxynivalenol, three-nitro propionic acid, ochratoxin A, lipopolysaccharide, nicotine, aconite, domoic acid, α-synuclein, amyloid β, and glutamate as well as aluminum, cadmium, chrome, copper, iron, and lead. These antidotal effects occur by multi-functional mechanisms. It may be attributed to antioxidant, anti-inflammatory, and anti-apoptotic effects. Future research directions on the antidotal effects of ginseng against natural toxins and metal toxicity involve broadening the scope of studies to include a wider range of toxins and metals, exploring synergistic interactions with other natural compounds, and conducting more human clinical trials to validate the efficacy and safety of ginseng-based treatments.

Abstract Image

研究三七及其成分对生物毒素和金属毒性的保护作用:机理综述
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信