Min Seok Kim, Hyun Young Park, Soo Hyun Choi, Eun-Ju Chang, JaeSang Ko, Jin Sook Yoon
{"title":"Pentraxin3 mediates inflammation and adipogenesis in Graves’ orbitopathy pathogenesis","authors":"Min Seok Kim, Hyun Young Park, Soo Hyun Choi, Eun-Ju Chang, JaeSang Ko, Jin Sook Yoon","doi":"10.1530/jme-24-0039","DOIUrl":null,"url":null,"abstract":"<p>Pentraxin 3 (PTX3) is a prototypic humoral soluble pattern-recognition molecule known to function in immunity-related inflammation. Given the lack of information on the precise functions of PTX3 in the pathogenesis of Graves’ orbitopathy (GO), this study investigated the role of PTX3 in the inflammation and adipogenesis mechanism of GO. We first compared the PTX3 expression between orbital tissues from patients with GO and normal controls, using real-time polymerase chain reaction, which estimated significantly higher PTX3 transcript levels in the GO tissues than in the normal tissues. In addition, PTX3 production was markedly increased upon interleukin (IL)-1β and adipogenic stimulation. We then evaluated the effects of silencing PTX3 in primary orbital fibroblast cultures by analyzing the expression levels of pro-inflammatory cytokines, adipogenesis-related proteins, and downstream transcription factors in cells transfected with or without a small interfering RNA against PTX3, using western blot. Silencing PTX3 attenuated the IL-1β-induced secretion of pro-inflammatory cytokines, including IL-6, IL-8, monocyte chemotactic protein-1, intercellular adhesion molecule-1, and cyclooxygenase-2, and suppressed the IL-1β-mediated activation of p38 kinase, nuclear factor-κB, and extracellular signal-regulated kinase. Moreover, PTX3 knockdown suppressed adipogenic differentiation, as assessed using Oil Red O staining, as well as the expression of adipogenesis-associated transcription factors including peroxisome proliferator activator-γ, CCAAT/enhancer-binding proteins α and β, adipocyte protein 2, adiponectin, and leptin. Thus, this study suggests that PTX3 plays a significant role in the pathogenesis of GO and may serve as a novel therapeutic target for the condition.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"30 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/jme-24-0039","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Pentraxin 3 (PTX3) is a prototypic humoral soluble pattern-recognition molecule known to function in immunity-related inflammation. Given the lack of information on the precise functions of PTX3 in the pathogenesis of Graves’ orbitopathy (GO), this study investigated the role of PTX3 in the inflammation and adipogenesis mechanism of GO. We first compared the PTX3 expression between orbital tissues from patients with GO and normal controls, using real-time polymerase chain reaction, which estimated significantly higher PTX3 transcript levels in the GO tissues than in the normal tissues. In addition, PTX3 production was markedly increased upon interleukin (IL)-1β and adipogenic stimulation. We then evaluated the effects of silencing PTX3 in primary orbital fibroblast cultures by analyzing the expression levels of pro-inflammatory cytokines, adipogenesis-related proteins, and downstream transcription factors in cells transfected with or without a small interfering RNA against PTX3, using western blot. Silencing PTX3 attenuated the IL-1β-induced secretion of pro-inflammatory cytokines, including IL-6, IL-8, monocyte chemotactic protein-1, intercellular adhesion molecule-1, and cyclooxygenase-2, and suppressed the IL-1β-mediated activation of p38 kinase, nuclear factor-κB, and extracellular signal-regulated kinase. Moreover, PTX3 knockdown suppressed adipogenic differentiation, as assessed using Oil Red O staining, as well as the expression of adipogenesis-associated transcription factors including peroxisome proliferator activator-γ, CCAAT/enhancer-binding proteins α and β, adipocyte protein 2, adiponectin, and leptin. Thus, this study suggests that PTX3 plays a significant role in the pathogenesis of GO and may serve as a novel therapeutic target for the condition.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.