Establish seedling quality classification standard for Chrysanthemum efficiently with help of deep clustering algorithm

Yanzhi Jing, Hongguang Zhao, Shujun Yu
{"title":"Establish seedling quality classification standard for Chrysanthemum efficiently with help of deep clustering algorithm","authors":"Yanzhi Jing, Hongguang Zhao, Shujun Yu","doi":"arxiv-2409.08867","DOIUrl":null,"url":null,"abstract":"Establishing reasonable standards for edible chrysanthemum seedlings helps\npromote seedling development, thereby improving plant quality. However, current\ngrading methods have the several issues. The limitation that only support a few\nindicators causes information loss, and indicators selected to evaluate\nseedling level have a narrow applicability. Meanwhile, some methods misuse\nmathematical formulas. Therefore, we propose a simple, efficient, and generic\nframework, SQCSEF, for establishing seedling quality classification standards\nwith flexible clustering modules, applicable to most plant species. In this\nstudy, we introduce the state-of-the-art deep clustering algorithm CVCL, using\nfactor analysis to divide indicators into several perspectives as inputs for\nthe CVCL method, resulting in more reasonable clusters and ultimately a grading\nstandard $S_{cvcl}$ for edible chrysanthemum seedlings. Through conducting\nextensive experiments, we validate the correctness and efficiency of the\nproposed SQCSEF framework.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Establishing reasonable standards for edible chrysanthemum seedlings helps promote seedling development, thereby improving plant quality. However, current grading methods have the several issues. The limitation that only support a few indicators causes information loss, and indicators selected to evaluate seedling level have a narrow applicability. Meanwhile, some methods misuse mathematical formulas. Therefore, we propose a simple, efficient, and generic framework, SQCSEF, for establishing seedling quality classification standards with flexible clustering modules, applicable to most plant species. In this study, we introduce the state-of-the-art deep clustering algorithm CVCL, using factor analysis to divide indicators into several perspectives as inputs for the CVCL method, resulting in more reasonable clusters and ultimately a grading standard $S_{cvcl}$ for edible chrysanthemum seedlings. Through conducting extensive experiments, we validate the correctness and efficiency of the proposed SQCSEF framework.
借助深度聚类算法有效建立菊花种苗质量分类标准
制定合理的食用菊花种苗标准有助于促进种苗发育,从而提高植物质量。然而,目前的分级方法存在几个问题。仅支持少数几个指标的局限性造成了信息的缺失,所选择的评价秧苗水平的指标适用性较窄。同时,有些方法滥用数学公式。因此,我们提出了一个简单、高效、通用的框架 SQCSEF,用于建立苗木质量分类标准,具有灵活的聚类模块,适用于大多数植物物种。在本研究中,我们引入了最先进的深度聚类算法 CVCL,利用因子分析法将指标分为几个角度作为 CVCL 方法的输入,从而得到更合理的聚类,并最终得到食用菊花种苗的分级标准 $S_{cvcl}$。通过大量实验,我们验证了所提出的 SQCSEF 框架的正确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信