Recent advances in deep learning and language models for studying the microbiome

Binghao Yan, Yunbi Nam, Lingyao Li, Rebecca A. Deek, Hongzhe Li, Siyuan Ma
{"title":"Recent advances in deep learning and language models for studying the microbiome","authors":"Binghao Yan, Yunbi Nam, Lingyao Li, Rebecca A. Deek, Hongzhe Li, Siyuan Ma","doi":"arxiv-2409.10579","DOIUrl":null,"url":null,"abstract":"Recent advancements in deep learning, particularly large language models\n(LLMs), made a significant impact on how researchers study microbiome and\nmetagenomics data. Microbial protein and genomic sequences, like natural\nlanguages, form a language of life, enabling the adoption of LLMs to extract\nuseful insights from complex microbial ecologies. In this paper, we review\napplications of deep learning and language models in analyzing microbiome and\nmetagenomics data. We focus on problem formulations, necessary datasets, and\nthe integration of language modeling techniques. We provide an extensive\noverview of protein/genomic language modeling and their contributions to\nmicrobiome studies. We also discuss applications such as novel viromics\nlanguage modeling, biosynthetic gene cluster prediction, and knowledge\nintegration for metagenomics studies.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in deep learning, particularly large language models (LLMs), made a significant impact on how researchers study microbiome and metagenomics data. Microbial protein and genomic sequences, like natural languages, form a language of life, enabling the adoption of LLMs to extract useful insights from complex microbial ecologies. In this paper, we review applications of deep learning and language models in analyzing microbiome and metagenomics data. We focus on problem formulations, necessary datasets, and the integration of language modeling techniques. We provide an extensive overview of protein/genomic language modeling and their contributions to microbiome studies. We also discuss applications such as novel viromics language modeling, biosynthetic gene cluster prediction, and knowledge integration for metagenomics studies.
用于研究微生物组的深度学习和语言模型的最新进展
深度学习,尤其是大型语言模型(LLMs)的最新进展,对研究人员如何研究微生物组和基因组学数据产生了重大影响。微生物蛋白质和基因组序列就像自然语言一样,构成了一种生命语言,因此可以采用 LLMs 从复杂的微生物生态中提取有用的见解。本文回顾了深度学习和语言模型在分析微生物组和基因组学数据中的应用。我们重点讨论了问题的提出、必要的数据集以及语言建模技术的整合。我们广泛介绍了蛋白质/基因组语言建模及其对微生物组研究的贡献。我们还讨论了新型病毒组语言建模、生物合成基因簇预测和元基因组研究知识整合等应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信