Impact of arsenic on male and female reproductive function: a review of the pathophysiology and potential therapeutic strategies

A. E. Adeogun, O. D. Ogunleye, T. M. Akhigbe, P. A. Oyedokun, C. A. Adegbola, W. A. Saka, O. A. Afolabi, R. E. Akhigbe
{"title":"Impact of arsenic on male and female reproductive function: a review of the pathophysiology and potential therapeutic strategies","authors":"A. E. Adeogun, O. D. Ogunleye, T. M. Akhigbe, P. A. Oyedokun, C. A. Adegbola, W. A. Saka, O. A. Afolabi, R. E. Akhigbe","doi":"10.1007/s00210-024-03452-6","DOIUrl":null,"url":null,"abstract":"<p>Arsenic is a ubiquitous metalloid and heavy metal that contributes to the global decline in human fertility. Humans are constantly exposed to arsenic through biotic and abiotic sources, especially ingestion of arsenic-contaminated food and water. Its exposure is associated with several adverse health challenges, including reproductive toxicity. In spite of its reported adverse effects, arsenic exposure remains a global challenge. Hence, this study provides a comprehensive review of the literature on the impact and mechanism of arsenic on male and female reproductive function. Additionally, a review of the potential therapeutic strategies is presented. Evidence from the literature reveals that arsenic upregulates reactive oxygen species (ROS) generation which mediates arsenic-induced suppression of the hypothalamic-pituitary–gonadal axis and inactivation of 3β-HSD and 17β-HSD activities, leading to reduced gonadal steroidogenesis. Through several oxidative stress-dependent signaling, arsenic induces the apoptosis of the germ cells, thus contributing to the development of infertility. At the moment, there is no specific treatment for arsenic-induced reproductive toxicity. However, increasing data form the scientific literature reveals the benefits of antioxidants in ameliorating arsenic-induced reproductive toxicity. These molecules suppress ROS generation and maintain optimal activities of the hypothalamic-pituitary–gonadal axis, leading to optimal steroidogenesis and gametogenesis as well as improved germ cells. Overall, this study revealed the impact and associated mechanism of arsenic-induced reproductive toxicity. It also provides evidence from the literature demonstrating potential therapeutic measures in managing arsenic-induced reproductive toxicity.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-schmiedebergs Archives of Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00210-024-03452-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arsenic is a ubiquitous metalloid and heavy metal that contributes to the global decline in human fertility. Humans are constantly exposed to arsenic through biotic and abiotic sources, especially ingestion of arsenic-contaminated food and water. Its exposure is associated with several adverse health challenges, including reproductive toxicity. In spite of its reported adverse effects, arsenic exposure remains a global challenge. Hence, this study provides a comprehensive review of the literature on the impact and mechanism of arsenic on male and female reproductive function. Additionally, a review of the potential therapeutic strategies is presented. Evidence from the literature reveals that arsenic upregulates reactive oxygen species (ROS) generation which mediates arsenic-induced suppression of the hypothalamic-pituitary–gonadal axis and inactivation of 3β-HSD and 17β-HSD activities, leading to reduced gonadal steroidogenesis. Through several oxidative stress-dependent signaling, arsenic induces the apoptosis of the germ cells, thus contributing to the development of infertility. At the moment, there is no specific treatment for arsenic-induced reproductive toxicity. However, increasing data form the scientific literature reveals the benefits of antioxidants in ameliorating arsenic-induced reproductive toxicity. These molecules suppress ROS generation and maintain optimal activities of the hypothalamic-pituitary–gonadal axis, leading to optimal steroidogenesis and gametogenesis as well as improved germ cells. Overall, this study revealed the impact and associated mechanism of arsenic-induced reproductive toxicity. It also provides evidence from the literature demonstrating potential therapeutic measures in managing arsenic-induced reproductive toxicity.

Abstract Image

砷对男性和女性生殖功能的影响:病理生理学和潜在治疗策略综述
砷是一种无处不在的类金属和重金属,是导致全球人类生育能力下降的原因之一。人类通过生物和非生物来源不断接触砷,特别是摄入受砷污染的食物和水。接触砒霜会对健康造成多种不利影响,包括生殖毒性。尽管有报告称砷会造成不良影响,但砷暴露仍然是一项全球性挑战。因此,本研究全面回顾了有关砷对男性和女性生殖功能的影响和机制的文献。此外,还对潜在的治疗策略进行了综述。文献证据显示,砷可上调活性氧(ROS)的生成,从而介导砷对下丘脑-垂体-性腺轴的抑制以及 3β-HSD 和 17β-HSD 活性的失活,导致性腺类固醇生成减少。砷通过几种依赖氧化应激的信号传导,诱导生殖细胞凋亡,从而导致不育症的发生。目前,砷引起的生殖毒性还没有专门的治疗方法。不过,科学文献中越来越多的数据显示,抗氧化剂对改善砷引起的生殖毒性有好处。这些分子可抑制 ROS 生成,维持下丘脑-垂体-性腺轴的最佳活动,从而优化类固醇生成和配子生成,并改善生殖细胞。总之,这项研究揭示了砷诱导生殖毒性的影响和相关机制。它还提供了文献证据,证明了控制砷引起的生殖毒性的潜在治疗措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信