Cardioprotective effects of GPER agonist in ovariectomized diabetic rats: reversing ER stress and structural changes

Mohammad Amin Ghaffari Sirizi, Mansour Esmailidehaj, Seyed-Mahdi Mohamadi-Zarch, Maryam Yadeghari, Hossein Azizian
{"title":"Cardioprotective effects of GPER agonist in ovariectomized diabetic rats: reversing ER stress and structural changes","authors":"Mohammad Amin Ghaffari Sirizi, Mansour Esmailidehaj, Seyed-Mahdi Mohamadi-Zarch, Maryam Yadeghari, Hossein Azizian","doi":"10.1007/s00210-024-03438-4","DOIUrl":null,"url":null,"abstract":"<p>The incidence of diabetic cardiomyopathy (DCM) significantly increases in postmenopausal women, suggesting protective roles of estrogen. Excessive endoplasmic reticulum (ER) stress alters myocardial structure, which plays a crucial role in DCM. The G protein-coupled estrogen receptor (GPER) has been demonstrated to have cardioprotective effects, but it remains unclear whether these effects involve the amelioration of structural changes induced by ER stress. The objective of this study was to determine whether GPER can prevent cardiac structural changes by attenuating ER stress. Female ovariectomized (OVX) rats were divided into three groups: OVX, OVX + T2D, and OVX + T2D + G1. T2D was induced by a high-fat diet, and streptozotocin and G1, a GPER agonist, were administered for 6 weeks. Finally, histological changes of the myocardium were examined and the expression of sarcoplasmic reticulum calcium ATPase (SERCA2α), GRP78 as an ER stress marker, and apoptotic signalings were determined by Western blot. We observed that the induction of T2D resulted in an increased cardiac weight index, left ventricular wall thickness, and myocyte diameter. However, GPER activation reversed these changes. T2D increased cardiac protein levels of GRP78, caspase-12, and Bax, while decreasing levels of SERCA2α and Bcl-2. Nevertheless, GPER activation reduced the expression of GRP78 in OVX + T2D rats. Furthermore, GPER activation significantly reduced cardiac caspase-12 and Bax levels and increased SERCA2α and Bcl-2 expression. In conclusion, our data suggest that GPER activation ameliorates DCM by inhibiting ER stress-induced cardiac structural changes. These findings provide a new potential target for therapeutic intervention and drug discovery specifically tailored for postmenopausal diabetic women.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-schmiedebergs Archives of Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00210-024-03438-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence of diabetic cardiomyopathy (DCM) significantly increases in postmenopausal women, suggesting protective roles of estrogen. Excessive endoplasmic reticulum (ER) stress alters myocardial structure, which plays a crucial role in DCM. The G protein-coupled estrogen receptor (GPER) has been demonstrated to have cardioprotective effects, but it remains unclear whether these effects involve the amelioration of structural changes induced by ER stress. The objective of this study was to determine whether GPER can prevent cardiac structural changes by attenuating ER stress. Female ovariectomized (OVX) rats were divided into three groups: OVX, OVX + T2D, and OVX + T2D + G1. T2D was induced by a high-fat diet, and streptozotocin and G1, a GPER agonist, were administered for 6 weeks. Finally, histological changes of the myocardium were examined and the expression of sarcoplasmic reticulum calcium ATPase (SERCA2α), GRP78 as an ER stress marker, and apoptotic signalings were determined by Western blot. We observed that the induction of T2D resulted in an increased cardiac weight index, left ventricular wall thickness, and myocyte diameter. However, GPER activation reversed these changes. T2D increased cardiac protein levels of GRP78, caspase-12, and Bax, while decreasing levels of SERCA2α and Bcl-2. Nevertheless, GPER activation reduced the expression of GRP78 in OVX + T2D rats. Furthermore, GPER activation significantly reduced cardiac caspase-12 and Bax levels and increased SERCA2α and Bcl-2 expression. In conclusion, our data suggest that GPER activation ameliorates DCM by inhibiting ER stress-induced cardiac structural changes. These findings provide a new potential target for therapeutic intervention and drug discovery specifically tailored for postmenopausal diabetic women.

Abstract Image

GPER 激动剂对卵巢切除糖尿病大鼠心脏的保护作用:逆转 ER 应激和结构变化
绝经后妇女的糖尿病心肌病(DCM)发病率明显增加,这表明雌激素具有保护作用。过度的内质网(ER)应激会改变心肌结构,这在 DCM 中起着至关重要的作用。G 蛋白偶联雌激素受体(GPER)已被证实具有保护心脏的作用,但目前仍不清楚这些作用是否包括改善 ER 应激引起的结构变化。本研究的目的是确定 GPER 是否能通过减轻 ER 压力来防止心脏结构变化。雌性卵巢切除(OVX)大鼠分为三组:OVX组、OVX + T2D组和OVX + T2D + G1组。通过高脂饮食诱导 T2D,并给大鼠注射链脲佐菌素和 GPER 激动剂 G1,持续 6 周。最后,对心肌组织学变化进行检测,并通过 Western 印迹法测定肌浆网钙离子 ATP 酶(SERCA2α)、ER 应激标记物 GRP78 和细胞凋亡信号的表达。我们观察到,诱导 T2D 会导致心脏重量指数、左心室壁厚度和心肌细胞直径增加。然而,GPER 激活可逆转这些变化。T2D增加了GRP78、caspase-12和Bax的心肌蛋白水平,同时降低了SERCA2α和Bcl-2的水平。然而,GPER 的激活降低了 OVX + T2D 大鼠中 GRP78 的表达。此外,GPER 的激活还能明显降低心脏 caspase-12 和 Bax 的水平,增加 SERCA2α 和 Bcl-2 的表达。总之,我们的数据表明,GPER 激活可通过抑制 ER 应激诱导的心脏结构变化来改善 DCM。这些发现为针对绝经后糖尿病妇女的治疗干预和药物研发提供了一个新的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信