A Model-Free Optimal Control Method With Fixed Terminal States and Delay

Mi Zhou, Erik Verriest, Chaouki Abdallah
{"title":"A Model-Free Optimal Control Method With Fixed Terminal States and Delay","authors":"Mi Zhou, Erik Verriest, Chaouki Abdallah","doi":"arxiv-2409.10722","DOIUrl":null,"url":null,"abstract":"Model-free algorithms are brought into the control system's research with the\nemergence of reinforcement learning algorithms. However, there are two\npractical challenges of reinforcement learning-based methods. First, learning\nby interacting with the environment is highly complex. Second, constraints on\nthe states (boundary conditions) require additional care since the state\ntrajectory is implicitly defined from the inputs and system dynamics. To\naddress these problems, this paper proposes a new model-free algorithm based on\nbasis functions, gradient estimation, and the Lagrange method. The favorable\nperformance of the proposed algorithm is shown using several examples under\nstate-dependent switches and time delays.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Model-free algorithms are brought into the control system's research with the emergence of reinforcement learning algorithms. However, there are two practical challenges of reinforcement learning-based methods. First, learning by interacting with the environment is highly complex. Second, constraints on the states (boundary conditions) require additional care since the state trajectory is implicitly defined from the inputs and system dynamics. To address these problems, this paper proposes a new model-free algorithm based on basis functions, gradient estimation, and the Lagrange method. The favorable performance of the proposed algorithm is shown using several examples under state-dependent switches and time delays.
具有固定终端状态和延迟的无模型最优控制方法
随着强化学习算法的出现,无模型算法被带入控制系统研究领域。然而,基于强化学习的方法存在两个实际挑战。首先,通过与环境交互进行学习非常复杂。其次,由于状态轨迹是根据输入和系统动态隐式定义的,因此对状态的约束(边界条件)需要额外的关注。为了解决这些问题,本文提出了一种基于基函数、梯度估计和拉格朗日法的新型无模型算法。本文通过几个例子展示了所提算法的优越性能,这些例子都不依赖于开关和时间延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信