Data-driven Dynamic Intervention Design in Network Games

Xiupeng Chen, Nima Monshizadeh
{"title":"Data-driven Dynamic Intervention Design in Network Games","authors":"Xiupeng Chen, Nima Monshizadeh","doi":"arxiv-2409.11069","DOIUrl":null,"url":null,"abstract":"Targeted interventions in games present a challenging problem due to the\nasymmetric information available to the regulator and the agents. This note\naddresses the problem of steering the actions of self-interested agents in\nquadratic network games towards a target action profile. A common starting\npoint in the literature assumes prior knowledge of utility functions and/or\nnetwork parameters. The goal of the results presented here is to remove this\nassumption and address scenarios where such a priori knowledge is unavailable.\nTo this end, we design a data-driven dynamic intervention mechanism that relies\nsolely on historical observations of agent actions and interventions.\nAdditionally, we modify this mechanism to limit the amount of interventions,\nthereby considering budget constraints. Analytical convergence guarantees are\nprovided for both mechanisms, and a numerical case study further demonstrates\ntheir effectiveness.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Targeted interventions in games present a challenging problem due to the asymmetric information available to the regulator and the agents. This note addresses the problem of steering the actions of self-interested agents in quadratic network games towards a target action profile. A common starting point in the literature assumes prior knowledge of utility functions and/or network parameters. The goal of the results presented here is to remove this assumption and address scenarios where such a priori knowledge is unavailable. To this end, we design a data-driven dynamic intervention mechanism that relies solely on historical observations of agent actions and interventions. Additionally, we modify this mechanism to limit the amount of interventions, thereby considering budget constraints. Analytical convergence guarantees are provided for both mechanisms, and a numerical case study further demonstrates their effectiveness.
网络游戏中数据驱动的动态干预设计
由于监管者和代理的信息不对称,在博弈中进行有针对性的干预是一个具有挑战性的问题。本论文探讨了如何在二次网络博弈中引导自利代理的行动向目标行动轮廓靠拢的问题。文献中一个常见的出发点是假设事先知道效用函数和/或网络参数。为此,我们设计了一种数据驱动的动态干预机制,该机制完全依赖于对代理行动和干预的历史观察。此外,我们还修改了该机制,以限制干预的数量,从而考虑到预算约束。我们为这两种机制提供了分析收敛保证,并通过数值案例研究进一步证明了它们的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信