From exponential to finite/fixed-time stability: Applications to optimization

Ibrahim K. Ozaslan, Mihailo R. Jovanović
{"title":"From exponential to finite/fixed-time stability: Applications to optimization","authors":"Ibrahim K. Ozaslan, Mihailo R. Jovanović","doi":"arxiv-2409.11713","DOIUrl":null,"url":null,"abstract":"The development of finite/fixed-time stable optimization algorithms typically\ninvolves study of specific problem instances. The lack of a unified framework\nhinders understanding of more sophisticated algorithms, e.g., primal-dual\ngradient flow dynamics. The purpose of this paper is to address the following\nquestion: Given an exponentially stable optimization algorithm, can it be\nmodified to obtain a finite/fixed-time stable algorithm? We provide an\naffirmative answer, demonstrate how the solution can be computed on a\nfinite-time interval via a simple scaling of the right-hand-side of the\noriginal dynamics, and certify the desired properties of the modified algorithm\nusing the Lyapunov function that proves exponential stability of the original\nsystem. Finally, we examine nonsmooth composite optimization problems and\nsmooth problems with linear constraints to demonstrate the merits of our\napproach.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of finite/fixed-time stable optimization algorithms typically involves study of specific problem instances. The lack of a unified framework hinders understanding of more sophisticated algorithms, e.g., primal-dual gradient flow dynamics. The purpose of this paper is to address the following question: Given an exponentially stable optimization algorithm, can it be modified to obtain a finite/fixed-time stable algorithm? We provide an affirmative answer, demonstrate how the solution can be computed on a finite-time interval via a simple scaling of the right-hand-side of the original dynamics, and certify the desired properties of the modified algorithm using the Lyapunov function that proves exponential stability of the original system. Finally, we examine nonsmooth composite optimization problems and smooth problems with linear constraints to demonstrate the merits of our approach.
从指数稳定性到有限/固定时间稳定性:优化应用
有限/固定时间稳定优化算法的开发通常涉及对具体问题实例的研究。缺乏统一的框架阻碍了对更复杂算法的理解,例如原始-双梯度流动力学。本文旨在解决以下问题:给定一个指数稳定的优化算法,能否通过修改得到一个有限/固定时间稳定算法?我们给出了肯定的答案,演示了如何通过简单缩放原动力学右侧来在有限时间间隔内计算解,并利用证明原系统指数稳定性的 Lyapunov 函数证明了修改后算法的预期特性。最后,我们检验了非光滑复合优化问题和具有线性约束的光滑问题,以证明我们方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信