Data-Efficient Quadratic Q-Learning Using LMIs

J. S. van Hulst, W. P. M. H. Heemels, D. J. Antunes
{"title":"Data-Efficient Quadratic Q-Learning Using LMIs","authors":"J. S. van Hulst, W. P. M. H. Heemels, D. J. Antunes","doi":"arxiv-2409.11986","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) has seen significant research and application\nresults but often requires large amounts of training data. This paper proposes\ntwo data-efficient off-policy RL methods that use parametrized Q-learning. In\nthese methods, the Q-function is chosen to be linear in the parameters and\nquadratic in selected basis functions in the state and control deviations from\na base policy. A cost penalizing the $\\ell_1$-norm of Bellman errors is\nminimized. We propose two methods: Linear Matrix Inequality Q-Learning (LMI-QL)\nand its iterative variant (LMI-QLi), which solve the resulting episodic\noptimization problem through convex optimization. LMI-QL relies on a convex\nrelaxation that yields a semidefinite programming (SDP) problem with linear\nmatrix inequalities (LMIs). LMI-QLi entails solving sequential iterations of an\nSDP problem. Both methods combine convex optimization with direct Q-function\nlearning, significantly improving learning speed. A numerical case study\ndemonstrates their advantages over existing parametrized Q-learning methods.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reinforcement learning (RL) has seen significant research and application results but often requires large amounts of training data. This paper proposes two data-efficient off-policy RL methods that use parametrized Q-learning. In these methods, the Q-function is chosen to be linear in the parameters and quadratic in selected basis functions in the state and control deviations from a base policy. A cost penalizing the $\ell_1$-norm of Bellman errors is minimized. We propose two methods: Linear Matrix Inequality Q-Learning (LMI-QL) and its iterative variant (LMI-QLi), which solve the resulting episodic optimization problem through convex optimization. LMI-QL relies on a convex relaxation that yields a semidefinite programming (SDP) problem with linear matrix inequalities (LMIs). LMI-QLi entails solving sequential iterations of an SDP problem. Both methods combine convex optimization with direct Q-function learning, significantly improving learning speed. A numerical case study demonstrates their advantages over existing parametrized Q-learning methods.
利用 LMI 进行数据高效的二次 Q 学习
强化学习(RL)的研究和应用成果显著,但往往需要大量的训练数据。本文提出了两种数据高效的非策略 RL 方法,它们使用参数化 Q 学习。在这些方法中,Q 函数被选择为在参数中是线性的,而在状态和控制偏离基本策略的选定基函数中是二次型的。对贝尔曼误差(Bellman errors)的$\ell_1$正态进行惩罚的成本最小化。我们提出了两种方法:线性矩阵不等式 Q 学习(LMI-QL)及其迭代变体(LMI-QLi),通过凸优化解决由此产生的偶发优化问题。LMI-QL 依靠的是一种凸松弛,它产生了一个带有线性矩阵不等式(LMI)的半定量编程(SDP)问题。LMI-QLi 需要求解一个 SDP 问题的连续迭代。这两种方法都将凸优化与直接 Q 函数学习相结合,大大提高了学习速度。一项数值案例研究证明了它们与现有参数化 Q-learning 方法相比的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信