On the intersection spectrum of $${\text {PSL}}_2(q)$$

Pub Date : 2024-09-13 DOI:10.1007/s10801-024-01356-5
Angelot Behajaina, Roghayeh Maleki, Andriaherimanana Sarobidy Razafimahatratra
{"title":"On the intersection spectrum of $${\\text {PSL}}_2(q)$$","authors":"Angelot Behajaina, Roghayeh Maleki, Andriaherimanana Sarobidy Razafimahatratra","doi":"10.1007/s10801-024-01356-5","DOIUrl":null,"url":null,"abstract":"<p>Given a group <i>G</i> and a subgroup <span>\\(H \\le G\\)</span>, a set <span>\\(\\mathcal {F}\\subset G\\)</span> is called <i>H</i><i>-intersecting</i> if for any <span>\\(g,g' \\in \\mathcal {F}\\)</span>, there exists <span>\\(xH \\in G/H\\)</span> such that <span>\\(gxH=g'xH\\)</span>. The <i>intersection density</i> of the action of <i>G</i> on <i>G</i>/<i>H</i> by (left) multiplication is the rational number <span>\\(\\rho (G,H)\\)</span>, equal to the maximum ratio <span>\\(\\frac{|\\mathcal {F}|}{|H|}\\)</span>, where <span>\\(\\mathcal {F} \\subset G\\)</span> runs through all <i>H</i>-intersecting sets of <i>G</i>. The <i>intersection spectrum</i> of the group <i>G</i> is then defined to be the set </p><span>$$\\begin{aligned} \\sigma (G) := \\left\\{ \\rho (G,H) : H\\le G \\right\\} . \\end{aligned}$$</span><p>It was shown by Bardestani and Mallahi-Karai (J Algebraic Combin, 42(1):111–128, 2015) that if <span>\\(\\sigma (G) = \\{1\\}\\)</span>, then <i>G</i> is necessarily solvable. The natural question that arises is, therefore, which rational numbers larger than 1 belong to <span>\\(\\sigma (G)\\)</span>, whenever <i>G</i> is non-solvable. In this paper, we study the intersection spectrum of the linear group <span>\\({\\text {PSL}}_2(q)\\)</span>. It is shown that <span>\\(2 \\in \\sigma \\left( {\\text {PSL}}_2(q)\\right) \\)</span>, for any prime power <span>\\(q\\equiv 3 \\pmod 4\\)</span>. Moreover, when <span>\\(q\\equiv 1 \\pmod 4\\)</span>, it is proved that <span>\\(\\rho ({\\text {PSL}}_2(q),H)=1\\)</span>, for any odd index subgroup <i>H</i> (containing <span>\\({\\mathbb {F}}_q\\)</span>) of the Borel subgroup (isomorphic to <span>\\({\\mathbb {F}}_q\\rtimes {\\mathbb {Z}}_{\\frac{q-1}{2}}\\)</span>) consisting of all upper triangular matrices.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01356-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a group G and a subgroup \(H \le G\), a set \(\mathcal {F}\subset G\) is called H-intersecting if for any \(g,g' \in \mathcal {F}\), there exists \(xH \in G/H\) such that \(gxH=g'xH\). The intersection density of the action of G on G/H by (left) multiplication is the rational number \(\rho (G,H)\), equal to the maximum ratio \(\frac{|\mathcal {F}|}{|H|}\), where \(\mathcal {F} \subset G\) runs through all H-intersecting sets of G. The intersection spectrum of the group G is then defined to be the set

$$\begin{aligned} \sigma (G) := \left\{ \rho (G,H) : H\le G \right\} . \end{aligned}$$

It was shown by Bardestani and Mallahi-Karai (J Algebraic Combin, 42(1):111–128, 2015) that if \(\sigma (G) = \{1\}\), then G is necessarily solvable. The natural question that arises is, therefore, which rational numbers larger than 1 belong to \(\sigma (G)\), whenever G is non-solvable. In this paper, we study the intersection spectrum of the linear group \({\text {PSL}}_2(q)\). It is shown that \(2 \in \sigma \left( {\text {PSL}}_2(q)\right) \), for any prime power \(q\equiv 3 \pmod 4\). Moreover, when \(q\equiv 1 \pmod 4\), it is proved that \(\rho ({\text {PSL}}_2(q),H)=1\), for any odd index subgroup H (containing \({\mathbb {F}}_q\)) of the Borel subgroup (isomorphic to \({\mathbb {F}}_q\rtimes {\mathbb {Z}}_{\frac{q-1}{2}}\)) consisting of all upper triangular matrices.

分享
查看原文
关于 $${text {PSL}}_2(q)$$ 的交集谱
给定一个群 G 和一个子群 (H /le G),如果对于任意的 (g,g'),存在 (xH /in G/H)使得 (gxH=g'xH/),那么这个集合 (\mathcal {F}\subset G)就叫做 H 交集。通过(左)乘法,G作用于G/H的交密度是有理数\(\rho (G,H)\),等于最大比率\(\frac{|\mathcal {F}|}{|H|}\), 其中\(\mathcal {F} \子集 G\) 贯穿G的所有H交集。\sigma (G) := \left\{ \rho (G,H) :Hle G \right\} .\end{aligned}$$Bardestani 和 Mallahi-Karai (J Algebraic Combin, 42(1):111-128, 2015) 证明,如果 \(\sigma (G) = \{1\}\),那么 G 必然是可解的。因此,自然而然产生的问题是,当 G 不可解时,哪些大于 1 的有理数属于 \(\sigma(G)\)。本文研究了线性群 \({\text {PSL}}_2(q)\) 的交集谱。研究表明,对于任意质幂 \(2 \in \sigma \left( {\text {PSL}}_2(q)\right) \),对于任意质幂 \(q\equiv 3 \pmod 4\).此外,当 \(q\equiv 1 \pmod 4\) 时,可以证明 \(\rho ({\text {PSL}}_2(q),H)=1\)、对于由所有上三角矩阵组成的波尔子群(与 \({\mathbb {F}_q\rtimes {\mathbb {Z}_{\frac{q-1}{2}} 同构)的任何奇数索引子群 H(包含 \({\mathbb {F}_q\) )。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信