{"title":"On the intersection spectrum of $${\\text {PSL}}_2(q)$$","authors":"Angelot Behajaina, Roghayeh Maleki, Andriaherimanana Sarobidy Razafimahatratra","doi":"10.1007/s10801-024-01356-5","DOIUrl":null,"url":null,"abstract":"<p>Given a group <i>G</i> and a subgroup <span>\\(H \\le G\\)</span>, a set <span>\\(\\mathcal {F}\\subset G\\)</span> is called <i>H</i><i>-intersecting</i> if for any <span>\\(g,g' \\in \\mathcal {F}\\)</span>, there exists <span>\\(xH \\in G/H\\)</span> such that <span>\\(gxH=g'xH\\)</span>. The <i>intersection density</i> of the action of <i>G</i> on <i>G</i>/<i>H</i> by (left) multiplication is the rational number <span>\\(\\rho (G,H)\\)</span>, equal to the maximum ratio <span>\\(\\frac{|\\mathcal {F}|}{|H|}\\)</span>, where <span>\\(\\mathcal {F} \\subset G\\)</span> runs through all <i>H</i>-intersecting sets of <i>G</i>. The <i>intersection spectrum</i> of the group <i>G</i> is then defined to be the set </p><span>$$\\begin{aligned} \\sigma (G) := \\left\\{ \\rho (G,H) : H\\le G \\right\\} . \\end{aligned}$$</span><p>It was shown by Bardestani and Mallahi-Karai (J Algebraic Combin, 42(1):111–128, 2015) that if <span>\\(\\sigma (G) = \\{1\\}\\)</span>, then <i>G</i> is necessarily solvable. The natural question that arises is, therefore, which rational numbers larger than 1 belong to <span>\\(\\sigma (G)\\)</span>, whenever <i>G</i> is non-solvable. In this paper, we study the intersection spectrum of the linear group <span>\\({\\text {PSL}}_2(q)\\)</span>. It is shown that <span>\\(2 \\in \\sigma \\left( {\\text {PSL}}_2(q)\\right) \\)</span>, for any prime power <span>\\(q\\equiv 3 \\pmod 4\\)</span>. Moreover, when <span>\\(q\\equiv 1 \\pmod 4\\)</span>, it is proved that <span>\\(\\rho ({\\text {PSL}}_2(q),H)=1\\)</span>, for any odd index subgroup <i>H</i> (containing <span>\\({\\mathbb {F}}_q\\)</span>) of the Borel subgroup (isomorphic to <span>\\({\\mathbb {F}}_q\\rtimes {\\mathbb {Z}}_{\\frac{q-1}{2}}\\)</span>) consisting of all upper triangular matrices.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01356-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given a group G and a subgroup \(H \le G\), a set \(\mathcal {F}\subset G\) is called H-intersecting if for any \(g,g' \in \mathcal {F}\), there exists \(xH \in G/H\) such that \(gxH=g'xH\). The intersection density of the action of G on G/H by (left) multiplication is the rational number \(\rho (G,H)\), equal to the maximum ratio \(\frac{|\mathcal {F}|}{|H|}\), where \(\mathcal {F} \subset G\) runs through all H-intersecting sets of G. The intersection spectrum of the group G is then defined to be the set
It was shown by Bardestani and Mallahi-Karai (J Algebraic Combin, 42(1):111–128, 2015) that if \(\sigma (G) = \{1\}\), then G is necessarily solvable. The natural question that arises is, therefore, which rational numbers larger than 1 belong to \(\sigma (G)\), whenever G is non-solvable. In this paper, we study the intersection spectrum of the linear group \({\text {PSL}}_2(q)\). It is shown that \(2 \in \sigma \left( {\text {PSL}}_2(q)\right) \), for any prime power \(q\equiv 3 \pmod 4\). Moreover, when \(q\equiv 1 \pmod 4\), it is proved that \(\rho ({\text {PSL}}_2(q),H)=1\), for any odd index subgroup H (containing \({\mathbb {F}}_q\)) of the Borel subgroup (isomorphic to \({\mathbb {F}}_q\rtimes {\mathbb {Z}}_{\frac{q-1}{2}}\)) consisting of all upper triangular matrices.