{"title":"On the intersection spectrum of $${\\text {PSL}}_2(q)$$","authors":"Angelot Behajaina, Roghayeh Maleki, Andriaherimanana Sarobidy Razafimahatratra","doi":"10.1007/s10801-024-01356-5","DOIUrl":null,"url":null,"abstract":"<p>Given a group <i>G</i> and a subgroup <span>\\(H \\le G\\)</span>, a set <span>\\(\\mathcal {F}\\subset G\\)</span> is called <i>H</i><i>-intersecting</i> if for any <span>\\(g,g' \\in \\mathcal {F}\\)</span>, there exists <span>\\(xH \\in G/H\\)</span> such that <span>\\(gxH=g'xH\\)</span>. The <i>intersection density</i> of the action of <i>G</i> on <i>G</i>/<i>H</i> by (left) multiplication is the rational number <span>\\(\\rho (G,H)\\)</span>, equal to the maximum ratio <span>\\(\\frac{|\\mathcal {F}|}{|H|}\\)</span>, where <span>\\(\\mathcal {F} \\subset G\\)</span> runs through all <i>H</i>-intersecting sets of <i>G</i>. The <i>intersection spectrum</i> of the group <i>G</i> is then defined to be the set </p><span>$$\\begin{aligned} \\sigma (G) := \\left\\{ \\rho (G,H) : H\\le G \\right\\} . \\end{aligned}$$</span><p>It was shown by Bardestani and Mallahi-Karai (J Algebraic Combin, 42(1):111–128, 2015) that if <span>\\(\\sigma (G) = \\{1\\}\\)</span>, then <i>G</i> is necessarily solvable. The natural question that arises is, therefore, which rational numbers larger than 1 belong to <span>\\(\\sigma (G)\\)</span>, whenever <i>G</i> is non-solvable. In this paper, we study the intersection spectrum of the linear group <span>\\({\\text {PSL}}_2(q)\\)</span>. It is shown that <span>\\(2 \\in \\sigma \\left( {\\text {PSL}}_2(q)\\right) \\)</span>, for any prime power <span>\\(q\\equiv 3 \\pmod 4\\)</span>. Moreover, when <span>\\(q\\equiv 1 \\pmod 4\\)</span>, it is proved that <span>\\(\\rho ({\\text {PSL}}_2(q),H)=1\\)</span>, for any odd index subgroup <i>H</i> (containing <span>\\({\\mathbb {F}}_q\\)</span>) of the Borel subgroup (isomorphic to <span>\\({\\mathbb {F}}_q\\rtimes {\\mathbb {Z}}_{\\frac{q-1}{2}}\\)</span>) consisting of all upper triangular matrices.\n</p>","PeriodicalId":14926,"journal":{"name":"Journal of Algebraic Combinatorics","volume":"52 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01356-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a group G and a subgroup \(H \le G\), a set \(\mathcal {F}\subset G\) is called H-intersecting if for any \(g,g' \in \mathcal {F}\), there exists \(xH \in G/H\) such that \(gxH=g'xH\). The intersection density of the action of G on G/H by (left) multiplication is the rational number \(\rho (G,H)\), equal to the maximum ratio \(\frac{|\mathcal {F}|}{|H|}\), where \(\mathcal {F} \subset G\) runs through all H-intersecting sets of G. The intersection spectrum of the group G is then defined to be the set
It was shown by Bardestani and Mallahi-Karai (J Algebraic Combin, 42(1):111–128, 2015) that if \(\sigma (G) = \{1\}\), then G is necessarily solvable. The natural question that arises is, therefore, which rational numbers larger than 1 belong to \(\sigma (G)\), whenever G is non-solvable. In this paper, we study the intersection spectrum of the linear group \({\text {PSL}}_2(q)\). It is shown that \(2 \in \sigma \left( {\text {PSL}}_2(q)\right) \), for any prime power \(q\equiv 3 \pmod 4\). Moreover, when \(q\equiv 1 \pmod 4\), it is proved that \(\rho ({\text {PSL}}_2(q),H)=1\), for any odd index subgroup H (containing \({\mathbb {F}}_q\)) of the Borel subgroup (isomorphic to \({\mathbb {F}}_q\rtimes {\mathbb {Z}}_{\frac{q-1}{2}}\)) consisting of all upper triangular matrices.
期刊介绍:
The Journal of Algebraic Combinatorics provides a single forum for papers on algebraic combinatorics which, at present, are distributed throughout a number of journals. Within the last decade or so, algebraic combinatorics has evolved into a mature, established and identifiable area of mathematics. Research contributions in the field are increasingly seen to have substantial links with other areas of mathematics.
The journal publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems.