Proximal Gradient Dynamics: Monotonicity, Exponential Convergence, and Applications

Anand Gokhale, Alexander Davydov, Francesco Bullo
{"title":"Proximal Gradient Dynamics: Monotonicity, Exponential Convergence, and Applications","authors":"Anand Gokhale, Alexander Davydov, Francesco Bullo","doi":"arxiv-2409.10664","DOIUrl":null,"url":null,"abstract":"In this letter, we study the proximal gradient dynamics. This\nrecently-proposed continuous-time dynamics solves optimization problems whose\ncost functions are separable into a nonsmooth convex and a smooth component.\nFirst, we show that the cost function decreases monotonically along the\ntrajectories of the proximal gradient dynamics. We then introduce a new\ncondition that guarantees exponential convergence of the cost function to its\noptimal value, and show that this condition implies the proximal\nPolyak-{\\L}ojasiewicz condition. We also show that the proximal\nPolyak-{\\L}ojasiewicz condition guarantees exponential convergence of the cost\nfunction. Moreover, we extend these results to time-varying optimization\nproblems, providing bounds for equilibrium tracking. Finally, we discuss\napplications of these findings, including the LASSO problem, quadratic\noptimization with polytopic constraints, and certain matrix based problems.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we study the proximal gradient dynamics. This recently-proposed continuous-time dynamics solves optimization problems whose cost functions are separable into a nonsmooth convex and a smooth component. First, we show that the cost function decreases monotonically along the trajectories of the proximal gradient dynamics. We then introduce a new condition that guarantees exponential convergence of the cost function to its optimal value, and show that this condition implies the proximal Polyak-{\L}ojasiewicz condition. We also show that the proximal Polyak-{\L}ojasiewicz condition guarantees exponential convergence of the cost function. Moreover, we extend these results to time-varying optimization problems, providing bounds for equilibrium tracking. Finally, we discuss applications of these findings, including the LASSO problem, quadratic optimization with polytopic constraints, and certain matrix based problems.
近端梯度动力学:单调性、指数收敛及应用
在这封信中,我们研究了近似梯度动力学。首先,我们证明了成本函数沿着近似梯度动力学的轨迹单调递减。然后,我们引入一个新条件,保证成本函数指数收敛到其最优值,并证明这个条件意味着近似波利亚克-{L}ojasiewicz 条件。我们还证明,proximalPolyak-{L}ojasiewicz 条件保证了成本函数的指数收敛。此外,我们还将这些结果扩展到了时变优化问题,为均衡跟踪提供了边界。最后,我们讨论了这些发现的应用,包括 LASSO 问题、带多点约束的二次优化以及某些基于矩阵的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信