Spectral properties of the gradient operator with nonconstant coefficients

IF 1.4 3区 数学 Q1 MATHEMATICS
F. Colombo, F. Mantovani, P. Schlosser
{"title":"Spectral properties of the gradient operator with nonconstant coefficients","authors":"F. Colombo, F. Mantovani, P. Schlosser","doi":"10.1007/s13324-024-00966-3","DOIUrl":null,"url":null,"abstract":"<p>In mathematical physics, the gradient operator with nonconstant coefficients encompasses various models, including Fourier’s law for heat propagation and Fick’s first law, that relates the diffusive flux to the gradient of the concentration. Specifically, consider <span>\\(n\\ge 3\\)</span> orthogonal unit vectors <span>\\(e_1,\\ldots ,e_n\\in {\\mathbb {R}}^n\\)</span>, and let <span>\\(\\Omega \\subseteq {\\mathbb {R}}^n\\)</span> be some (in general unbounded) Lipschitz domain. This paper investigates the spectral properties of the gradient operator <span>\\(T=\\sum _{i=1}^ne_ia_i(x)\\frac{\\partial }{\\partial x_i}\\)</span> with nonconstant positive coefficients <span>\\(a_i:{\\overline{\\Omega }}\\rightarrow (0,\\infty )\\)</span>. Under certain regularity and growth conditions on the <span>\\(a_i\\)</span>, we identify bisectorial or strip-type regions that belong to the <i>S</i>-resolvent set of <i>T</i>. Moreover, we obtain suitable estimates of the associated resolvent operator. Our focus lies in the spectral theory on the <i>S</i>-spectrum, designed to study the operators acting in Clifford modules <i>V</i> over the Clifford algebra <span>\\({\\mathbb {R}}_n\\)</span>, with vector operators being a specific crucial subclass. The spectral properties related to the <i>S</i>-spectrum of <i>T</i> are linked to the inversion of the operator <span>\\(Q_s(T):=T^2-2s_0T+|s|^2\\)</span>, where <span>\\(s\\in {\\mathbb {R}}^{n+1}\\)</span> is a paravector, i.e., it is of the form <span>\\(s=s_0+s_1e_1+\\cdots +s_ne_n\\)</span>. This spectral problem is substantially different from the complex one, since it allows to associate general boundary conditions to <span>\\(Q_s(T)\\)</span>, i.e., to the squared operator <span>\\(T^2\\)</span>.</p>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13324-024-00966-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In mathematical physics, the gradient operator with nonconstant coefficients encompasses various models, including Fourier’s law for heat propagation and Fick’s first law, that relates the diffusive flux to the gradient of the concentration. Specifically, consider \(n\ge 3\) orthogonal unit vectors \(e_1,\ldots ,e_n\in {\mathbb {R}}^n\), and let \(\Omega \subseteq {\mathbb {R}}^n\) be some (in general unbounded) Lipschitz domain. This paper investigates the spectral properties of the gradient operator \(T=\sum _{i=1}^ne_ia_i(x)\frac{\partial }{\partial x_i}\) with nonconstant positive coefficients \(a_i:{\overline{\Omega }}\rightarrow (0,\infty )\). Under certain regularity and growth conditions on the \(a_i\), we identify bisectorial or strip-type regions that belong to the S-resolvent set of T. Moreover, we obtain suitable estimates of the associated resolvent operator. Our focus lies in the spectral theory on the S-spectrum, designed to study the operators acting in Clifford modules V over the Clifford algebra \({\mathbb {R}}_n\), with vector operators being a specific crucial subclass. The spectral properties related to the S-spectrum of T are linked to the inversion of the operator \(Q_s(T):=T^2-2s_0T+|s|^2\), where \(s\in {\mathbb {R}}^{n+1}\) is a paravector, i.e., it is of the form \(s=s_0+s_1e_1+\cdots +s_ne_n\). This spectral problem is substantially different from the complex one, since it allows to associate general boundary conditions to \(Q_s(T)\), i.e., to the squared operator \(T^2\).

Abstract Image

具有非恒定系数的梯度算子的谱特性
在数学物理中,具有非恒定系数的梯度算子包含各种模型,包括热传播的傅里叶定律和菲克第一定律,后者将扩散通量与浓度梯度联系起来。具体来说,考虑 \(n\ge 3\) 正交单位向量 \(e_1,\ldots ,e_n\in {\mathbb {R}}^n\), 并让\(\Omega \subseteq {\mathbb {R}}^n\) 是某个(一般来说是无界的)Lipschitz 域。本文研究了具有非恒定正系数的梯度算子 \(T=\sum _{i=1}^ne_ia_i(x)\frac{/partial }{/partial x_i}\) 的频谱特性(\(a_i:{overline/{Omega }}\rightarrow (0,\infty )\ )。在关于 \(a_i\) 的某些正则性和增长条件下,我们确定了属于 T 的 S-resolvent 集的双向或条带型区域,此外,我们还得到了相关 resolvent 算子的合适估计值。我们的重点在于 S 谱的谱理论,旨在研究在克利福德代数 \({\mathbb {R}}_n\) 上的克利福德模块 V 中作用的算子,其中向量算子是一个特定的关键子类。与 T 的 S 谱相关的谱性质与算子 \(Q_s(T):=T^2-2s_0T+|s|^2\) 的反演有关,其中 \(s\in {\mathbb {R}}^{n+1}\) 是一个旁向量,即它的形式是 \(s=s_0+s_1e_1+\cdots +s_ne_n/\)。这个谱问题与复数问题有本质区别,因为它允许将一般边界条件与 \(Q_s(T)\)联系起来,即与平方算子 \(T^2\)联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信