Self-oxidation of the atmospheres of rocky planets with implications for the origin of life

Anders JohansenUniversity of Copenhagen, Eloi CamprubiUniversity of Texas Rio Grande Valley, Elishevah van KootenUniversity of Copenhagen, Jens HoeijmakersLund University
{"title":"Self-oxidation of the atmospheres of rocky planets with implications for the origin of life","authors":"Anders JohansenUniversity of Copenhagen, Eloi CamprubiUniversity of Texas Rio Grande Valley, Elishevah van KootenUniversity of Copenhagen, Jens HoeijmakersLund University","doi":"arxiv-2409.11070","DOIUrl":null,"url":null,"abstract":"Rocky planets may acquire a primordial atmosphere by outgassing of volatiles\nfrom their magma ocean. The distribution of O between H$_2$O, CO and CO$_2$ in\nchemical equilibrium subsequently changes significantly with decreasing\ntemperature. We explore here two chemical models: one where CH$_4$ and NH$_3$\nare assumed to be irrevocably destroyed by photolysis, and one where these\nmolecules persist. In the first case, we show that CO cannot co-exist with\nH$_2$O, since CO oxidizes at low temperatures to form CO$_2$ and H$_2$. In both\ncases, H escapes from the thermosphere within a few ten million years by\nabsorption of stellar XUV radiation. This escape drives an atmospheric\nself-oxidation process whereby rocky planet atmospheres become dominated by\nCO$_2$ and H$_2$O, regardless of their initial oxidation state at outgassing.\nHCN is considered a potential precursor of prebiotic compounds and RNA. Our\noxidizing atmospheres are inefficient at producing HCN by lightning. Instead,\nwe demonstrate that lightning-produced NO, which dissolves as nitrate in the\noceans, and interplanetary dust particles may be the main sources of fixed\nnitrogen to emerging biospheres. Our results highlight the need for\norigin-of-life scenarios where the first metabolism fixes its C from CO$_2$,\nrather than from HCN and CO.","PeriodicalId":501209,"journal":{"name":"arXiv - PHYS - Earth and Planetary Astrophysics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rocky planets may acquire a primordial atmosphere by outgassing of volatiles from their magma ocean. The distribution of O between H$_2$O, CO and CO$_2$ in chemical equilibrium subsequently changes significantly with decreasing temperature. We explore here two chemical models: one where CH$_4$ and NH$_3$ are assumed to be irrevocably destroyed by photolysis, and one where these molecules persist. In the first case, we show that CO cannot co-exist with H$_2$O, since CO oxidizes at low temperatures to form CO$_2$ and H$_2$. In both cases, H escapes from the thermosphere within a few ten million years by absorption of stellar XUV radiation. This escape drives an atmospheric self-oxidation process whereby rocky planet atmospheres become dominated by CO$_2$ and H$_2$O, regardless of their initial oxidation state at outgassing. HCN is considered a potential precursor of prebiotic compounds and RNA. Our oxidizing atmospheres are inefficient at producing HCN by lightning. Instead, we demonstrate that lightning-produced NO, which dissolves as nitrate in the oceans, and interplanetary dust particles may be the main sources of fixed nitrogen to emerging biospheres. Our results highlight the need for origin-of-life scenarios where the first metabolism fixes its C from CO$_2$, rather than from HCN and CO.
岩质行星大气的自氧化作用对生命起源的影响
岩石行星可能是通过岩浆海洋中挥发物的排气而获得原始大气的。在化学平衡状态下,O 在 H$_2$O、CO 和 CO$_2$ 之间的分布随温度的降低而发生显著变化。我们在这里探讨了两种化学模型:一种是假定 CH$_4$ 和 NH$_3$ 被光解不可逆转地破坏,另一种是这些分子持续存在。在第一种情况下,我们证明 CO 无法与 H$_2$O 共存,因为 CO 在低温下会氧化形成 CO$_2$ 和 H$_2$。在这两种情况下,H都会在几千万年内通过吸收恒星的XUV辐射从热层中逃逸出来。HCN被认为是前生物化合物和RNA的潜在前体。氧化大气通过闪电产生 HCN 的效率很低。相反,我们证明了闪电产生的 NO(在海洋中溶解为硝酸盐)和行星际尘埃粒子可能是新兴生物圈固定氮的主要来源。我们的研究结果凸显了生命起源情景的必要性,在这种情景中,第一次新陈代谢从 CO$_2$ 而不是从 HCN 和 CO 来固定其 C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信