Thermal Evolution of Lava Planets

Mahesh Herath, Charles-Édouard Boukaré, Nicolas B. Cowan
{"title":"Thermal Evolution of Lava Planets","authors":"Mahesh Herath, Charles-Édouard Boukaré, Nicolas B. Cowan","doi":"arxiv-2409.11459","DOIUrl":null,"url":null,"abstract":"Rocky planets are thought to form with a magma ocean that quickly solidifies.\nThe horizontal and vertical extent of this magma ocean depends on the interior\nthermal evolution of the planet, and possibly exogenous processes such as\nplanet migration. We present a model for simulating the thermal history of\ntidally locked lava planets. We initiate the model with a completely molten\nmantle and evolve it for ten billion years. We adopt a fixed surface\ntemperature of 3000 K for the irradiated day-side, but allow the night-side\ntemperature to evolve along with the underlying layers. We simulate planets of\nradius 1.0$R_{\\oplus}$ and 1.5$R_{\\oplus}$ with different core mass fractions,\nalthough the latter does not significantly impact the thermal evolution. We\nconfirm that the day-side magma ocean on these planets has a depth that depends\non the planetary radius. The night-side, on the other hand, begins\ncrystallizing within a few thousand years and completely solidifies within 800\nmillion years in the absence of substantial tidal heating or day-night heat\ntransport. We show that a magma ocean can be sustained on the night-side of a\nlava planet if at least 20 per cent of absorbed stellar power is transmitted\nfrom the day-side to the night-side via magma currents. Such day-night\ntransport could be sustained if the magma has a viscosity of $10^{-3}$ Pa s,\nwhich is plausible at these temperatures. Alternatively, the night-side could\nremain molten if the mush layer is tidally heated at the rate of $8 \\times\n10^{-4}$ W/kg of mush, which is plausible for orbital eccentricities of $e > 7\n\\times 10^{-3}$. Night-side cooling is a runaway process, however: the magma\nbecomes more viscous and the mush solidifies, reducing both day-night heat\ntransport and tidal heating. Measurements of the night-sides of lava planets\nare therefore a sensitive probe of the thermal history of these planets.","PeriodicalId":501209,"journal":{"name":"arXiv - PHYS - Earth and Planetary Astrophysics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rocky planets are thought to form with a magma ocean that quickly solidifies. The horizontal and vertical extent of this magma ocean depends on the interior thermal evolution of the planet, and possibly exogenous processes such as planet migration. We present a model for simulating the thermal history of tidally locked lava planets. We initiate the model with a completely molten mantle and evolve it for ten billion years. We adopt a fixed surface temperature of 3000 K for the irradiated day-side, but allow the night-side temperature to evolve along with the underlying layers. We simulate planets of radius 1.0$R_{\oplus}$ and 1.5$R_{\oplus}$ with different core mass fractions, although the latter does not significantly impact the thermal evolution. We confirm that the day-side magma ocean on these planets has a depth that depends on the planetary radius. The night-side, on the other hand, begins crystallizing within a few thousand years and completely solidifies within 800 million years in the absence of substantial tidal heating or day-night heat transport. We show that a magma ocean can be sustained on the night-side of a lava planet if at least 20 per cent of absorbed stellar power is transmitted from the day-side to the night-side via magma currents. Such day-night transport could be sustained if the magma has a viscosity of $10^{-3}$ Pa s, which is plausible at these temperatures. Alternatively, the night-side could remain molten if the mush layer is tidally heated at the rate of $8 \times 10^{-4}$ W/kg of mush, which is plausible for orbital eccentricities of $e > 7 \times 10^{-3}$. Night-side cooling is a runaway process, however: the magma becomes more viscous and the mush solidifies, reducing both day-night heat transport and tidal heating. Measurements of the night-sides of lava planets are therefore a sensitive probe of the thermal history of these planets.
熔岩行星的热演化
岩浆洋的水平和垂直范围取决于行星的内部热演化,也可能取决于行星迁移等外源过程。我们提出了一个模拟内部锁定熔岩行星热历史的模型。我们以一个完全熔融的幔帐启动模型,并使其演化 100 亿年。我们将辐照日面的表面温度固定为 3000 K,但允许夜面温度随底层一起演化。我们模拟了半径为 1.0$R_{\oplus}$ 和 1.5$R_{\oplus}$ 的行星,它们具有不同的内核质量分数,尽管后者对热演化没有显著影响。我们证实,这些行星日侧岩浆海洋的深度取决于行星半径。另一方面,在没有大量潮汐加热或昼夜热传导的情况下,夜侧岩浆在几千年内开始结晶,并在8亿年内完全凝固。我们的研究表明,如果吸收的恒星能量至少有20%通过岩浆流从白天传输到夜晚,那么岩浆海洋就可以在熔岩行星的夜晚一侧得以维持。如果岩浆的粘度为10^{-3}$ Pa s,这种昼夜传输就可以维持,而在这种温度下,这种粘度是可信的。另外,如果蘑菇层被潮汐加热的速率为8 \times10^{-4}$ W/kg蘑菇,那么夜间也可以保持熔融状态,这在轨道偏心率为e > 7\times 10^{-3}$时是可信的。然而,夜间冷却是一个失控过程:岩浆变得更加粘稠,岩浆凝固,从而减少了昼夜热传导和潮汐加热。因此,对熔岩行星夜面的测量是对这些行星热历史的敏感探测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信