Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations

Hussam Al DaasSTFC, Scientific Computing Department, Rutherford Appleton Laboratory, Didcot, UK, Grey BallardWake Forest University, Computer Science Department, Winston-Salem, NC, USA, Laura GrigoriEPFL, Institute of Mathematics, Lausanne, Switzerland and PSI, Center for Scientific Computing, Theory and Data, Villigen, Switzerland, Suraj KumarInstitut national de recherche en sciences et technologies du numérique, Lyon, France, Kathryn RouseInmar Intelligence, Winston-Salem, NC, USA, Mathieu VeriteEPFL, Institute of Mathematics, Lausanne, Switzerland
{"title":"Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations","authors":"Hussam Al DaasSTFC, Scientific Computing Department, Rutherford Appleton Laboratory, Didcot, UK, Grey BallardWake Forest University, Computer Science Department, Winston-Salem, NC, USA, Laura GrigoriEPFL, Institute of Mathematics, Lausanne, Switzerland and PSI, Center for Scientific Computing, Theory and Data, Villigen, Switzerland, Suraj KumarInstitut national de recherche en sciences et technologies du numérique, Lyon, France, Kathryn RouseInmar Intelligence, Winston-Salem, NC, USA, Mathieu VeriteEPFL, Institute of Mathematics, Lausanne, Switzerland","doi":"arxiv-2409.11304","DOIUrl":null,"url":null,"abstract":"In this article, we focus on the communication costs of three symmetric\nmatrix computations: i) multiplying a matrix with its transpose, known as a\nsymmetric rank-k update (SYRK) ii) adding the result of the multiplication of a\nmatrix with the transpose of another matrix and the transpose of that result,\nknown as a symmetric rank-2k update (SYR2K) iii) performing matrix\nmultiplication with a symmetric input matrix (SYMM). All three computations\nappear in the Level 3 Basic Linear Algebra Subroutines (BLAS) and have wide use\nin applications involving symmetric matrices. We establish communication lower\nbounds for these kernels using sequential and distributed-memory parallel\ncomputational models, and we show that our bounds are tight by presenting\ncommunication-optimal algorithms for each setting. Our lower bound proofs rely\non applying a geometric inequality for symmetric computations and analytically\nsolving constrained nonlinear optimization problems. The symmetric matrix and\nits corresponding computations are accessed and performed according to a\ntriangular block partitioning scheme in the optimal algorithms.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"7 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we focus on the communication costs of three symmetric matrix computations: i) multiplying a matrix with its transpose, known as a symmetric rank-k update (SYRK) ii) adding the result of the multiplication of a matrix with the transpose of another matrix and the transpose of that result, known as a symmetric rank-2k update (SYR2K) iii) performing matrix multiplication with a symmetric input matrix (SYMM). All three computations appear in the Level 3 Basic Linear Algebra Subroutines (BLAS) and have wide use in applications involving symmetric matrices. We establish communication lower bounds for these kernels using sequential and distributed-memory parallel computational models, and we show that our bounds are tight by presenting communication-optimal algorithms for each setting. Our lower bound proofs rely on applying a geometric inequality for symmetric computations and analytically solving constrained nonlinear optimization problems. The symmetric matrix and its corresponding computations are accessed and performed according to a triangular block partitioning scheme in the optimal algorithms.
对称矩阵计算的通信下限和最佳算法
本文重点讨论三种对称矩阵计算的通信成本:i)矩阵与其转置相乘,称为非对称秩-k 更新(SYRK) ii)矩阵与另一矩阵的转置相乘的结果与该结果的转置相加,称为对称秩-2k 更新(SYR2K) iii)与对称输入矩阵执行矩阵乘法(SYMM)。所有这三种计算都出现在第 3 级基本线性代数子程序(BLAS)中,并在涉及对称矩阵的应用中得到广泛应用。我们使用顺序和分布式内存并行计算模型建立了这些内核的通信下界,并通过提出每种环境下的通信最优算法来证明我们的下界是紧密的。我们的下界证明依赖于应用对称计算的几何不等式和分析解决受限非线性优化问题。在最优算法中,对称矩阵及其相应的计算是根据三角形块分割方案访问和执行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信