Semantics Preserving Emoji Recommendation with Large Language Models

Zhongyi Qiu, Kangyi Qiu, Hanjia Lyu, Wei Xiong, Jiebo Luo
{"title":"Semantics Preserving Emoji Recommendation with Large Language Models","authors":"Zhongyi Qiu, Kangyi Qiu, Hanjia Lyu, Wei Xiong, Jiebo Luo","doi":"arxiv-2409.10760","DOIUrl":null,"url":null,"abstract":"Emojis have become an integral part of digital communication, enriching text\nby conveying emotions, tone, and intent. Existing emoji recommendation methods\nare primarily evaluated based on their ability to match the exact emoji a user\nchooses in the original text. However, they ignore the essence of users'\nbehavior on social media in that each text can correspond to multiple\nreasonable emojis. To better assess a model's ability to align with such\nreal-world emoji usage, we propose a new semantics preserving evaluation\nframework for emoji recommendation, which measures a model's ability to\nrecommend emojis that maintain the semantic consistency with the user's text.\nTo evaluate how well a model preserves semantics, we assess whether the\npredicted affective state, demographic profile, and attitudinal stance of the\nuser remain unchanged. If these attributes are preserved, we consider the\nrecommended emojis to have maintained the original semantics. The advanced\nabilities of Large Language Models (LLMs) in understanding and generating\nnuanced, contextually relevant output make them well-suited for handling the\ncomplexities of semantics preserving emoji recommendation. To this end, we\nconstruct a comprehensive benchmark to systematically assess the performance of\nsix proprietary and open-source LLMs using different prompting techniques on\nour task. Our experiments demonstrate that GPT-4o outperforms other LLMs,\nachieving a semantics preservation score of 79.23%. Additionally, we conduct\ncase studies to analyze model biases in downstream classification tasks and\nevaluate the diversity of the recommended emojis.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emojis have become an integral part of digital communication, enriching text by conveying emotions, tone, and intent. Existing emoji recommendation methods are primarily evaluated based on their ability to match the exact emoji a user chooses in the original text. However, they ignore the essence of users' behavior on social media in that each text can correspond to multiple reasonable emojis. To better assess a model's ability to align with such real-world emoji usage, we propose a new semantics preserving evaluation framework for emoji recommendation, which measures a model's ability to recommend emojis that maintain the semantic consistency with the user's text. To evaluate how well a model preserves semantics, we assess whether the predicted affective state, demographic profile, and attitudinal stance of the user remain unchanged. If these attributes are preserved, we consider the recommended emojis to have maintained the original semantics. The advanced abilities of Large Language Models (LLMs) in understanding and generating nuanced, contextually relevant output make them well-suited for handling the complexities of semantics preserving emoji recommendation. To this end, we construct a comprehensive benchmark to systematically assess the performance of six proprietary and open-source LLMs using different prompting techniques on our task. Our experiments demonstrate that GPT-4o outperforms other LLMs, achieving a semantics preservation score of 79.23%. Additionally, we conduct case studies to analyze model biases in downstream classification tasks and evaluate the diversity of the recommended emojis.
利用大型语言模型进行语义保存型表情符号推荐
表情符号已成为数字通信中不可或缺的一部分,通过传达情感、语气和意图来丰富文本内容。现有的表情符号推荐方法主要是根据是否能准确匹配用户在原始文本中选择的表情符号来进行评估的。然而,这些方法忽略了用户在社交媒体上行为的本质,即每篇文本可以对应多个合理的表情符号。为了更好地评估模型与真实世界中的表情符号使用情况保持一致的能力,我们提出了一个新的表情符号推荐语义保护评估框架,用于衡量模型推荐与用户文本语义保持一致的表情符号的能力。为了评估模型的语义保护程度,我们评估用户的预测情感状态、人口统计学特征和态度立场是否保持不变。如果这些属性保持不变,我们就认为推荐的表情符号保持了原有语义。大语言模型(LLM)在理解和生成增强的、与上下文相关的输出方面具有先进的能力,这使它们非常适合处理语义保留表情符号推荐的复杂问题。为此,我们构建了一个综合基准,系统地评估了在我们的任务中使用不同提示技术的六种专有和开源 LLM 的性能。实验证明,GPT-4o 的性能优于其他 LLM,语义保存率达到 79.23%。此外,我们还进行了案例研究,分析了下游分类任务中的模型偏差,并评估了推荐表情符号的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信