A novel DFS/BFS approach towards link prediction

Jens Dörpinghaus, Tobias Hübenthal, Denis Stepanov
{"title":"A novel DFS/BFS approach towards link prediction","authors":"Jens Dörpinghaus, Tobias Hübenthal, Denis Stepanov","doi":"arxiv-2409.11687","DOIUrl":null,"url":null,"abstract":"Knowledge graphs have been shown to play a significant role in current\nknowledge mining fields, including life sciences, bioinformatics, computational\nsocial sciences, and social network analysis. The problem of link prediction\nbears many applications and has been extensively studied. However, most methods\nare restricted to dimension reduction, probabilistic model, or similarity-based\napproaches and are inherently biased. In this paper, we provide a definition of\ngraph prediction for link prediction and outline related work to support our\nnovel approach, which integrates centrality measures with classical machine\nlearning methods. We examine our experimental results in detail and identify\nareas for potential further research. Our method shows promise, particularly\nwhen utilizing randomly selected nodes and degree centrality.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge graphs have been shown to play a significant role in current knowledge mining fields, including life sciences, bioinformatics, computational social sciences, and social network analysis. The problem of link prediction bears many applications and has been extensively studied. However, most methods are restricted to dimension reduction, probabilistic model, or similarity-based approaches and are inherently biased. In this paper, we provide a definition of graph prediction for link prediction and outline related work to support our novel approach, which integrates centrality measures with classical machine learning methods. We examine our experimental results in detail and identify areas for potential further research. Our method shows promise, particularly when utilizing randomly selected nodes and degree centrality.
用于链路预测的新型 DFS/BFS 方法
知识图谱在当前的知识挖掘领域(包括生命科学、生物信息学、计算社会科学和社会网络分析)发挥着重要作用。链接预测问题有很多应用,并已得到广泛研究。然而,大多数方法都局限于降维、概率模型或基于相似性的方法,本身存在偏差。在本文中,我们为链接预测提供了图预测的定义,并概述了相关工作以支持我们的新方法,该方法将中心性度量与经典机器学习方法相结合。我们详细研究了我们的实验结果,并确定了潜在的进一步研究领域。我们的方法很有前途,尤其是在利用随机选择的节点和度中心性时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信