Pareto Sums of Pareto Sets: Lower Bounds and Algorithms

Daniel Funke, Demian Hespe, Peter Sanders, Sabine Storandt, Carina Truschel
{"title":"Pareto Sums of Pareto Sets: Lower Bounds and Algorithms","authors":"Daniel Funke, Demian Hespe, Peter Sanders, Sabine Storandt, Carina Truschel","doi":"arxiv-2409.10232","DOIUrl":null,"url":null,"abstract":"In bi-criteria optimization problems, the goal is typically to compute the\nset of Pareto-optimal solutions. Many algorithms for these types of problems\nrely on efficient merging or combining of partial solutions and filtering of\ndominated solutions in the resulting sets. In this article, we consider the\ntask of computing the Pareto sum of two given Pareto sets $A, B$ of size $n$.\nThe Pareto sum $C$ contains all non-dominated points of the Minkowski sum $M =\n\\{a+b|a \\in A, b\\in B\\}$. Since the Minkowski sum has a size of $n^2$, but the\nPareto sum $C$ can be much smaller, the goal is to compute $C$ without having\nto compute and store all of $M$. We present several new algorithms for\nefficient Pareto sum computation, including an output-sensitive successive\nalgorithm with a running time of $O(n \\log n + nk)$ and a space consumption of\n$O(n+k)$ for $k=|C|$. If the elements of $C$ are streamed, the space\nconsumption reduces to $O(n)$. For output sizes $k \\geq 2n$, we prove a\nconditional lower bound for Pareto sum computation, which excludes running\ntimes in $O(n^{2-\\delta})$ for $\\delta > 0$ unless the (min,+)-convolution\nhardness conjecture fails. The successive algorithm matches this lower bound\nfor $k \\in \\Theta(n)$. However, for $k \\in \\Theta(n^2)$, the successive\nalgorithm exhibits a cubic running time. But we also present an algorithm with\nan output-sensitive space consumption and a running time of $O(n^2 \\log n)$,\nwhich matches the lower bound up to a logarithmic factor even for large $k$.\nFurthermore, we describe suitable engineering techniques to improve the\npractical running times of our algorithms. Finally, we provide an extensive\ncomparative experimental study on generated and real-world data. As a showcase\napplication, we consider preprocessing-based bi-criteria route planning in road\nnetworks.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In bi-criteria optimization problems, the goal is typically to compute the set of Pareto-optimal solutions. Many algorithms for these types of problems rely on efficient merging or combining of partial solutions and filtering of dominated solutions in the resulting sets. In this article, we consider the task of computing the Pareto sum of two given Pareto sets $A, B$ of size $n$. The Pareto sum $C$ contains all non-dominated points of the Minkowski sum $M = \{a+b|a \in A, b\in B\}$. Since the Minkowski sum has a size of $n^2$, but the Pareto sum $C$ can be much smaller, the goal is to compute $C$ without having to compute and store all of $M$. We present several new algorithms for efficient Pareto sum computation, including an output-sensitive successive algorithm with a running time of $O(n \log n + nk)$ and a space consumption of $O(n+k)$ for $k=|C|$. If the elements of $C$ are streamed, the space consumption reduces to $O(n)$. For output sizes $k \geq 2n$, we prove a conditional lower bound for Pareto sum computation, which excludes running times in $O(n^{2-\delta})$ for $\delta > 0$ unless the (min,+)-convolution hardness conjecture fails. The successive algorithm matches this lower bound for $k \in \Theta(n)$. However, for $k \in \Theta(n^2)$, the successive algorithm exhibits a cubic running time. But we also present an algorithm with an output-sensitive space consumption and a running time of $O(n^2 \log n)$, which matches the lower bound up to a logarithmic factor even for large $k$. Furthermore, we describe suitable engineering techniques to improve the practical running times of our algorithms. Finally, we provide an extensive comparative experimental study on generated and real-world data. As a showcase application, we consider preprocessing-based bi-criteria route planning in road networks.
帕累托集合的帕累托和:下界与算法
在双标准优化问题中,目标通常是计算帕累托最优解集。针对这类问题的许多算法都依赖于对部分解的高效合并或组合,以及对所得集合中占优解的过滤。在本文中,我们考虑的任务是计算大小为 $n$ 的两个给定帕累托集合 $A、B 的帕累托和。帕累托和 $C$ 包含闵科夫斯基和 $M =\{a+b|a\in A, b\in B\}$ 的所有非支配点。由于闵科夫斯基和的大小为 $n^2$,但帕累托和 $C$ 可以小得多,因此我们的目标是计算 $C$,而不必计算和存储所有的 $M$。我们提出了几种高效计算帕累托和的新算法,其中包括一种对输出敏感的连续算法,其运行时间为 $O(n \log n + nk)$,在 $k=|C|$ 时的空间消耗为 $O(n+k)$。如果 $C$ 的元素是流式的,空间消耗就会减少到 $O(n)$。对于输出大小 $k \geq 2n$,我们证明了帕累托求和计算的条件下限,它排除了 $\delta > 0$ 时运行时间为 $O(n^{2-\delta})$ 的情况,除非(min,+)-演化艰巨性猜想失败。对于 $k \in \Theta(n)$ 来说,连续算法符合这个下限。然而,对于 $k \ in \Theta(n^2)$ 来说,连续算法的运行时间是立方的。但我们也提出了一种算法,它对输出空间消耗敏感,运行时间为 $O(n^2\log n)$,即使在 $k$ 较大的情况下,其下限也能达到对数因子。最后,我们对生成的数据和真实世界的数据进行了广泛的比较实验研究。作为展示应用,我们考虑了道路网络中基于预处理的双标准路线规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信